[AMERICAN JOURNAL OF SCIENCE, VOL. 294, May, 1994, P. 529-592]

American Journal of Science

MAY 1994

A COUPLED MODEL FOR TRANSPORT OF MULTIPLE
CHEMICAL SPECIES AND KINETIC
PRECIPITATION/DISSOLUTION REACTIONS WITH
APPLICATION TO REACTIVE FLOW IN SINGLE PHASE
HYDROTHERMAL SYSTEMS

CARL I. STEEFEL* and ANTONIO C. LASAGA

Department of Geology and Geophysics,
Yale University, P.O. Box 208109,
New Haven, Connecticut 06520-8109

ABSTRACT. The essential features of a numerical model for comput-
in§ coupled multi-component chemical reactions, multi-species chemi-
cal transport, hydrodynamic flow, and heat transfer are described. The
model employs a new algorithm which solves simultaneously for multi-
component reactions and solute transport in one and two dimensions
and which uses kinetic formulations for mineral dissolution and precipi-
tation reactions, making the a priori assumption of equilibrium be-
tween water and minerals unnecessary. This feature is then used to
assess the validity of the local equilibrium approximation in single
phase hydrothermal systems. The code is also used to examine the
Froblem of reaction-induced porosity and permeability changes in a
ractured hydrothermal system. -

The numerical calculations indicate that significant disequilib-
rium with resFect to silicate phases is likely in thermal boundary layers
developed at low temperature, permeable interfaces (for example, at the
seafloor). Disequilibrium is less pronounced in the thermal boundary
layers of systems with impermeable upper surfaces because of the local
reduction in flow velocities near the boundary. The calculations show
that the extent of disequilibrium in thermal boundary layers formed in
fractured rock depengs on the fracture spacing (or fracture aperture)
and on the flow rate, which affects both the rate of solute transport and
the thickness of the thermal boundary layer. In the high temperature,
nearly isothermal inner portions of high Rayleigh number convection
cells, disequilibrium is possible only where very rapid flow and/or
widely spaced fractures occur. In systems where the flow is sufficiently
slow that linear temperature gradients occur, disequilibrium with re-
spect to silicate phases is likely only in the case where the fractures are
extremely widely spaced. The calculations also suggest that the pres-
ence or absence of metastable phases (for example, amorphous silica)
may be used to estimate permeabilities in paleo-hydrothermal systems
if fracture spacings can be determined.
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Two dimensional calculations of reactive flow in a model single
phase geothermal field with a porosit{-permeability relationship such
as that observed in the contact aureole of the Skaergaard intrusion in
Greenland (Manning and Bird, 1991) suggest that the local equilibrium
approximation is fully justified in such a system. The same model
Igeothermal system and porosity-permeability relationship have also

een used to study the eflects of reaction-induced porosity and perme-
ability change on the character of the convective regime. The calcula-
tions indicate that the rates of permeability change may be sufficiently
rapid that the convection cell never attains a hydrodynamic or thermal
steady state. Permeability reduction, which tends to occur where up-
welling fluids cool, causes the plume to become increasingly diffuse
with time because the ascending fluids diverge around the cemented
zone. Permeability enhancement, which most commonly occurs where
fluids move up temperature, can result in an instability which causes
channeling of flow. These effects do not depend on any particular
concentration boundary condition but rather are the natural conse-
quence of imposed thermal gradients in hydrothermal systems.

INTRODUCTION

A major objective of the current research on water-rock interaction 1s
to develop a more quantitative basis for its study. One of the most
important aspects of developing a quantitative approach to water-rock
interaction is the treatment of geochemical reactions and transport of
heat, fluid, and solutes as coupled phenomena. Most of the important
examples of water-rock interaction take place in open systems, where
ultimately the rates at which the rock is altered depend on the rates of
transport (Phillips, 1991; Lichtner, 1993). A quantitative prediction of
the rates of reaction, therefore, requires that solute transport, and, where
appropriate, heat and fluid transport, be explicitly considered. While a
rigorously quantitative treatment of water-rock interaction is many years
away, we would argue that it is important to begin to understand how
some of the various dynamical processes taking place in the rock couple
to each other, even if thre analysis.is carried out on somewhat simplified
variants of complicated geological settings. In this paper, we present a
preliminary attempt at a quantitative, coupled approach to the problem
of water-rock interaction. We describe the essential features of a numeri-
cal model for coupled multi-component reaction, solute transport, heat
transfer, and fluid flow and apply it to several important problems
relating to reactive hydrothermal systems.

A number of excellent studies have examined the problem of hydro-
dynamic flow and heat transfer in various geological settings (Donaldson,
1962; Elder, 1965, 1967a,b, 1981; Combarnous and Bories, 1975; Rib-
ando and Torrance, 1976; Norton and Knight, 1977; Cathles, 1977,
1981, 1983; Cheng, 1978; Norton, 1978, 1984; Norton and Cathles,
1979; Norton and Taylor, 1979; Garven and Freeze, 1984a,b; Bethke,
1985, 1986; Garven, 1989; Phillips, 1991; Lowell, 1991; Lowell, Van
Cappellen, and Germanovich, 1993). A separate line of research has
focused on developing and applying quantitative models for irreversible
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chemical reactions in multi-component and multi-mineralic systems,
beginning with the seminal studies by Helgeson (1968) and Helgeson,
Garrels, and MacKenzie (1969) of the irreversible weathering of granite.
These early studies were followed by the application of similar models to
a number of different geological environments (Brimhall, 1980; Reed,
1982, 1983; Brimhall and Ghiorso, 1983; Sverjensky, 1984; Bowers and
Taylor, 1985). The logical next step in the development of quantitative
models is to couple chemical reactions with mass transport (Rubin, 1983;
Miller and Benson, 1983; Walsh and others, 1984; Lasaga, 1984; Licht-
ner, 1985, 1988, 1992; Bryant, Schechter, and Lake, 1987; Schechter,
Bryant, and Lake, 1987; Kirkner and Reeves, 1988; Ague and Brimhall,
1989; Liu and Narasimhan, 1989a,b; Novak, Schechter, and Lake, 1989;
Steefel and Lasaga, 1990, 1992; Steefel and Van Cappellen, 1990; Yeh
and Tripathi, 1991; Wells and Ghiorso, 1991; Phillips, 1991; Lichtner
and Biino, 1992; Steefel, 1992; Sevougian, Schechter, and Lake, 1993).

Most of the studies of reactive transport in geological systems have
made use of the local equilibrium approximation. The assumption of
local equilibrium has long been one of the most fundamental tenets of
hydrothermal and metamorphic geochemistry and petrology. With the
rapidly accumulating database on mineral-fluid reaction rates, however,
it is possible to begin to assess the validity of the local equilibrium
approximation (Bahr and Rubin, 1987; Knapp, 1989; Steefel and Van
Cappellen, 1990; Lasaga and Rye, 1993). Such an assessment requires
that the geochemical reaction rates be linked to the appropriate trans-
port rates in the open system of interest. It is also surprising how few
studies have investigated how reactions and fluid flow couple through
reaction-induced porosity and permeability changes, despite the poten-
tially enormous geological significance of these effects (Ortoleva and
others, 1987; Hoefner and Fogler, 1988; Sanford and Konikow, 1989;
Steefel and Lasaga, 1990; Chen and others, 1990).

These are just two of the important problems that need to be
addressed via reaction-transport modeling. The treatment of chemical
reaction and fluid flow as coupled processes, however, has not been
considered feasible because of the sheer size and to some extent the
complexity of the problem. Analytical solutions to the reaction-transport
equation (Ogata and Banks, 1961; Bear, 1972, 1979; Fletcher and
Hoffman, 1974; Bickle and McKenzie, 1988; Lassey and Blattner, 1988;
Lichtner, 1988; Lasaga, 1989; Phillips, 1991) offer some important
insights into the underlying dynamics of the coupled system, but because
they are restricted to one-dimensional systems with constant flow fields
and to a single chemical component, they cannot describe the full range
of complex phenomena that emerge when multi-component, multi-
dimensional transport and reaction are considered. In their full form, the
governing differential equations for coupled reaction and transport are
nonlinear and therefore must be solved using numerical methods. The
dramatic increase in computational power which hads become available in
the last few years at relatively low cost has made the numerical treatment
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of the problem of multi-dimensional and multi-component reaction and
transport feasible for the first time. We make the further prediction that
the availability of massively parallel computers in the future will eventu-
ally make the multi-dimensional reaction-transport problem routine.

The paper begins with a discussion of the features of the numerical
approach presented here which are noteworthy, although individually
they are not necessarily unique to this particular code. One important
feature is the use of a finite difference formulation for computing
coupled reaction and transport for multi-component and multi-miner-
alic systems. The finite difference method, although computationally
more intensive than the simpler reaction path models, allows for model-
ing of the entire range of both transient and steady-state phenomena,
including advective, dispersive, and diffusive transport or any combina-
tion of these. A second important feature is the use of a kinetic formula-
tion for all the mineral-water reactions. The approach described is the
only one we are aware of, along with the recent study of Sevougian,
Schechter, and Lake (1993), which combines a finite difference approach
and kinetically-controlled, multi-component mineral-water reactions. The
discussion of these features is followed by a description of the mathemati-
cal and numerical formulations used in the code. The chief innovation is
the use of a global implicit or one-step method to solve the combined
reaction and solute transport terms (in other words, the reaction and
solute transport terms are solved simultaneously rather than in se-
quence). Another notable feature is the use of basis switching (rewriting
the reactions locally in terms of the dominant aqueous species) which may
improve both the convergence properties and the robustness of the
numerical calculations. Finally, as applications of the reaction-transport
model, we attempt to assess the validity of the local equilibrium approxi-
mation in hydrothermal systems, and we examine the problem of reaction-
induced permeability change in a hydrothermal convection cell.

A FINITE DIFFERENCE MODEL

The approach to modeling reactive flow adopted here is to use
numerical methods based on the finite difference method. The finite
difference method, like the finite element method, breaks the domain of
interest up into a series of discrete blocks or elements. The methods are
applied to problems where an analytical solution to the governing partial
differential equation is not available. A numerical solution is obtained
instead by solving N algebraic equation, where N is the number of blocks
or elements used to discretize the spatial domain. The accuracy with
which the governing set of partial differential equations can be solved,
therefore, depends on the number of blocks or elements used. In a
multi-component chemical system, we also have to consider M indepen-
dent components, so that in practice the minimum number of equations
to be solved at every time step is N X M. This is why finite difference
methods have not been widely used. The finite difference (or element)

?



multiple chemical species and kinetic precipitation/dissolution reactions 533

method, however, does have the advantage that it is a perfectly general
approach applicable to all forms of solute transport (advection, disper-
sion, and diffusion or any combination of these) and to both steady-state
and transient problems. In addition, the method can be extended (at
least in theory) to two or three dimensions, an essential capability for
modeling many hydrogeochemical phenomena.

The first step in formulating the problem in terms of finite differ-
ences is to define a representative elementary volume or REV which is large
enough that one can define a mean property (for example, permeability,
reactive surface area, et cetera) for that region and yet small enough that
one can resolve the features of interest. Because of the computational cost
of using fine grids in the case of the multi-component reaction and
transport, the second condition is difficult to achieve for many systems at
the present time. In the classical finite difference approach (Lapidus and
Pinder, 1982; Marsily, 1986), one gives to a mathematical point in space
the mean properties of the REV surrounding that point. In the slightly
different integrated finite difference method, the properties are aver-
aged instead over the boundaries of the volume (Narasimhan and With-
erspoon, 1976; Marsily, 1986). The basic concept, however, is the same:
by breaking the domain of interest up into a number of discrete volumes,
the spatial derivatives in the governing equations can be approximated as
differences (thus the name). If the time derivative is also approximated as
a difference, then the partial differential equations are converted into a
set of simultaneous algebraic equations.

KINETIC VERSUS EQUILIBRIUM MODELS

An important consideration in constructing a model for coupled
reaction and transport is whether to assume that the fluid phase is in local
equilibrium with the minerals in the rock or whether to use a kinetic
formulation. There can be some computational advantages to assuming
equilibrium. In particular, the assumption of equilibrium among the
various aqueous species allows one to reduce significantly the number of
actual chemical unknowns in the system (Reed, 1982; Lichtner, 1985;
Kirkner and Reeves, 1988). The key question is what kind of errors the
assumption of local equilibrium introduces into the calculations. In the
case of reactions taking place between aqueous species (homogeneous
reactions), most of them are much more rapid than the normal rates of
transport due to fluid flow. This may not be true for various oxidation-
reduction reactions at low temperature (Ohmoto and Lasaga, 1982). A
number of mineral-water reactions, however, are extremely slow at low
temperature (Rimstidt and Barnes, 1980; Lasaga, 1984; Nagy, Blum, and
Lasaga, 1991), and the assumption of local equilibrium may not be
Jjustified (Steefel and Van Cappellen, 1990; Nagy and others, 1990).

A second argument often cited in favor of the assumption of local
equilibrium is that we know very little about mineral-water reaction rates

@
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and even less about mineral reactive surface areas in natural systems.
This is true enough, but it is important to point out that this is an
inherent complexity in nature and not an artifact of the kinetic model. A
local equilibrium model only avoids this problem by choosing reaction
rates that are much faster than the rates of transport. One does not,
therefore, completely avoid the problems associated with our lack of
knowledge of kinetics.

Local equilibrium is, of course, a limiting condition in which the rates
of reaction are much more rapid than the rates of solute transport
(Thompson, 1959; Helgeson, 1979; Bahr and Rubin, 1987; Knapp,
1989). This implies that a kinetic as opposed to equilibrium formulation
is always the more general approach in describing mineral-water reac-
tions. It is only with a kinetic model that one can attempt to assess the
validity of the local equilibrium approximation. One expects that a
“kinetic” model should produce “equilibrium” behavior under the right
set of circumstances.

We have used a kinetic formulation for all the mineral-water reac-
tions included in the present code. Equilibrium is assumed among the
various aqueous species present, although this requirement needs to be
relaxed in future developments in order to model low-temperature
oxidation-reduction reactions in natural waters. The one and two-
dimensional simulations of reactive flow in hydrothermal systems pre-
sented below are used to attempt to estimate the conditions where the
local equilibrium approximation is likely to be valid.

A

MATHEMATICAL FORMULATION

Conservation of solute mass.—A partial differential equation describing
the conservation of solute mass in the aqueous phase of a system that
includes both transport and reaction in saturated porous media can be
written

A(dC;)

T+ V (Jdis[)+,]adv+Jdiﬁ") =Ri (l = 1’ 2? aNtot)? (1)

.

where C; is the mass concentration of some species in solution (in units of
moles per unit volume solution), Ny, is the total number of aqueous
species, Juiy» Jay» and Jog are the dispersive, diffusive, and advective fluxes
respectively (all in units of moles per unit area rock per unit time), and R;
(in units of moles per unit volume rock per unit time) is the total reaction
rate of species i in solution. Note that the porosity, ¢, is imbedded in both
the flux terms and the reaction terms as described below. If the system is
not isothermal, then the concentration can be written in terms of the fluid
density, p;, and the molality, m;,

C; = ppm;. (2)

#
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The reaction term R; can be divided into dissolution-precipitation (heter-
ogeneous) reactions, R, and aqueous (homogeneous) reactions, R,
such that

R, = R + R, (3)

if sorption reactions are neglected. The reaction rate is written here in
terms of a unit volume of rock but could be written equivalently per unit
volume of fluid if it were then multiplied by the porosity, ¢.

The advective flux is given by

Jadv = uci’ (4)

where u is the Darcy fluid flux. The Darcy flux is related to the average
linear velocity (or “true velocity”) of the fluid, v, by

u = odv. (5)
The dispersive flux is given by (Marsily, 1986)
Jdixp = —DyVC, (6)

where D is the mechanical or kinematic dispersion tensor. The dispersion
is assumed to be second order and to have as its principal direction the
velocity vector of the flow. The dispersion tensor consists of a longitudi-
nal dispersion coefficient, Dy, in the direction of the flow and a tranverse
dispersion coefhcient, Dy, perpendicular to the flow direction. The
dispersion coefficients are usually assumed to depend on the flow veloci-
ties according to

Dy = ay|ul (7)
and

D'[‘

ar|ul (8)

where |u] is the absolute value of the Darcy flux, and «, and o, are the
longitudinal and transverse dispersivities respectively. If we choose a
coordinate system such that one of the axes corresponds to the direction
of flow, then the dispersion tensor for a two dimensional system becomes

D — o |u] 0 9
vl 0 apu)) ©)

Note that off-diagonal terms arise when one of the coordinate axes is not
parallel to the flow. The diffusive flux is given by

where D* is the molecular diffusion coefficient in porous media (Marsily,
1986). For the sake of compactness, we can combine the hydrodynamic

@
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dispersion coefhicient and the molecular diffusion coeflicient into a single
dispersion/diftusion coeflicient given by (Bear, 1979)

D = D, + D*. (11)

The heterogeneous reaction term R™" can be written more explicitly as
the sum of all the individual mineral-water reactions that affect the
concentration of the ith species

N
R;”m == 2 VimTms (12)
m=1
where r,, is the rate of precipitation or dissolution of mineral m per unit
volume rock, v;, is the number of moles of ¢ in mineral m, and N,, is the
number of minerals present in the rock. By convention, r,, is taken as
positive for precipitation and negative for dissolution.

Eq (1) provides a general formulation for the conservation of solute
mass which makes no assumptions of chemical equilibrium. It is possible
to reduce the number of independent concentrations (the number that
actually need to be solved), if we assume that the aqueous species are in
chemical equilibrium. Mathematically, this means that in a system contain-
ing N, aqueous species, the number of independent chemical compo-
nents in the system N, is reduced from the total number of species by the
N, linearly independent chemical reactions between them (for further
discussion, see Hooyman, 1961; Aris, 1965; Bowen, 1968; Van Zeggeren
and Storey, 1970; Parkhurst, Thorstenson, and Plummer, 1980; Reed,
1982; Lichtner, 1985; Kirkner and Reeves, 1988). This leads to a natural
partitioning of the system into N, primary species, designated here as C,,
and the N, secondary species, referred to as X; (Reed, 1982; Lichtner, 1985;
Kirkner and Reeves, 1988). The reversible chemical reactions between
the primary and secondary species take the form

Ne
A= XA, G=1,...,N,), (13)
=t :

where the 4; and the A, are the chemical formulas of the primary and
secondary species respectively and v; is the number of moles of primary
species j in one mole of secondary species i. It should be noted here that
the partitioning between the primary and secondary species is not
unique, thatis, we can write the chemical reactions in more than one way.
The reversible reactions provide an algebraic link between the primary
and secondary species via the law of mass action for each reaction

N
X=k v gy =18, (14)
1=

#
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where the K; are the equilibrium constants of the reaction given in eq
(13), written here as the destruction of one mole of the secondary species.
Given this partition between primary and secondary species, the govern-
ing partial differential equations can be written as

a(‘bcj) V. C DV _ pmin R =1 15
o + (uC; - C) =R + R; (y=1,...,N) (15)
9(dX,) : |

—— =+ Vo @X, - DVX) =R+ R (i=1,...,N). (I6)

Eq (13), however, implies that the rate of production of a primary
componentj due to homogeneous reactions can be written in terms of the
sum of the total rates of production of the secondary species (Kirkner and
Reeves, 1988)

NX
R = — Z, vR.. (17)

Eq (17) suggests that one can think of a mineral dissolving, for example,
as producing only primary species which then equilibrate instantly with the
secondary species in the system. Using eq (17), the rates of the reversible
reactions can be eliminated if we make the simplifying assumption that
the D’s are the same for all the aqueous species (Lichtner, 1985; Kirkner
and Reeves, 1988). The use of differing diffusion coeflicients for the
various aqueous species requires special treatment in order to preserve
electroneutrality (Lichtner, 1985). Muluplying eq (16) by v; and sum-
ming over all the N, secondary species yields

a Nx Nx Nx
5[4)(; vl;jxi) V. HZ, vlel) - DV(E vl»sz)] = —RM. (18)

i=1
Adding eqs (15) and (18) gives a set of partial differential equations with
N, unknowns

;t[ (C + Evl,x)

Nx X
V- [u(cj + > vijxi) - DV(C,- + EVU»XZ)} =R"™ (j=1,...,N,)
i=1 ‘ i=1
(19)

In this particular example, only the term R”™" remains on the right hand
side of eq (19) because we have assumed that they are the only irrevers-
ible reactions. In the event that any of the homogeneous reactions are
irreversible as well, they can be included on the rlght hand side in the
same fashion (Lichtner, 1985).

@
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If a total concentration, U, is defined (Reed, 1982; Lichtner, 1985,
Kirkner and Reeves, 1988)

Ny
Up=¢;+ ; vy Xi, (20)

then the governing differential equations can be written in terms of the
total concentrations (Kirkner and Reeves, 1988)

o))
ot

+V-@U,-DVU) =R (j=1,...,N).  (2])

As pointed out by Reed (1982) and Lichtner (1985), the total concentra-
tions can usually be interpreted in a straightforward fashion as the total
elemental concentrations (for example, total aluminum in solution), but
in the case of H* and redox species, the total concentration has no simple
physical meaning and the total concentrations may take on negative
values.

Redox reactions.—Using the formulation for a total dissolved concen-
tration described above, redox reactions may be treated in the same
fashion as any other complexation or precipitation/dissolution reaction
(Reed, 1982; Lichtner, 1985). The only requirement is that the reactions
involving oxidation/reduction processes be electrically balanced.

MINERAL PRECIPITATION/DISSOLUTION RATE LAWS

Transport versus surface-controlled reaction.—The kinetics of mineral
precipitation and dissolution depend on (1) the rate of transport of
various aqueous species to the surface of the mineral, and (2) the rate of
attachment or detachment of ions from active sites on the mineral surface
(Lasaga, 1990). A complete formulation of a quantitative precipitation/
dissolution rate law, therefore, should include both transport and surface
processes. Because such formulations are more complicated for multi-
component systems, however, it is customary to attempt to identify one of
the processes, transport or surface attachment, as the rate-limiting step
(Berner, 1980; Lasaga, 1981, 1986, 1990; Murphy, Oelkers, and Licht-
ner, 1988). Two limiting cases occur: where the transport to the mineral
surface is much slower than the rate of attachment of ions at active sites,
the mineral growth or dissolution is referred to as transport-controlled,
whereas, in contrast, where the rate of attachment is much slower than
the transport rate, the mineral growth and dissolution is termed surface-
controlled. In many instances, both processes are of the same order of
magnitude, and therefore neither can be properly referred to as the
rate-limiting process.

The problem of determining whether surface attachment processes
or transport processes dominate the growth and dissolution of a given
crystal is more complicated in multi-component systems. In such systems,
a number of separate components must be transported and attached or
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detached from the crystal. The basic requirement that the rate of attach-
ment or detachment must equal the rate of transport of the various
components to the crystal is still present, but now we must also ensure
that the diffusive flux of each component must be in the stoichiometric
proportions corresponding to the overall reaction. This can be made
clearer by using a simple example like that of albite precipitation.
Assuming for simplicity that H*, Na*, Al***, and $i0,,, are the only
species present, the diffusive fluxes from the bulk solution into the albite
crystal must be

DNu+

Inar = (Crna+ = Cary)s (22)
DH+

]H+ = T (CH+ - CH+,S)7 (23)

DA[*** ,

Jarr+e = L (Cypree = Cyprrs ), (24)
Dy,

Jsio, = I (CSiO2 - CSi()2,x)’ (25)

where L is the diffusion length scale, and where in each case the subscript
s refers to the concentration of that species in solution immediately adjacent
to the albite crystal whereas the unsubscripted concentration (for ex-
ample, Cg,) refers to the concentration of that ion in the bulk solution.
In addition, the fluxes must be in their proper stoichiometric propor-
tions with respect to albite, that is

jNa* =JA1+++ = 3]81‘()2 - —4JH+. (26)

As in the one-component system, a second requirement is that the fluxes
match the attachment or detachment rate at the mineral surface which is
given by

Tu‘lb = Aalb kal&f(cx) = Aalijzﬁ" (27)

where A, is the surface area of albite, &, is the reaction rate constant for
albite, and f(C,) is some (as yet unspecified) function of the concentra-
tions next to the crystal surface. Because these concentrations adjacent to
the crystal are ¢ priori unknown, they must be determined in addition to
the concentrations of the same species in the bulk fluid phase (that is,
beyond the diffusion boundary layer next to the albite crystal). Since in
eqs (26) and (27) we have 4 equations in 4 unknowns, we can always write
eqs (22) through (25) in terms of a single diffusing species. Eq (26),
therefore, allows us to eliminate all but one of the unknown species
concentrations adjacent to the albite crystal. Thé resulting expression
includes the combined effects of both diffusive transport and surface
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attachment/detachment. In contrast to the single component case, how-
ever, a rate law applicable to a multi-component system means that in
general we need to solve for the root of one additional polynomial for
each reacting mineral in the system. While this is certainly feasible, the
added complexity and computational expense which the combined rate
law requires argued against using it in the present version of the reaction-
transport code.

Surface control in multi-component systems.—In contrast to the difficul-
ties posed by formulating a reaction rate law where transport plays a
major role, surface-controlled growth or dissolution as a limiting case
presents a much simpler problem from a computational point of view.
This is because the ton concentrations that enter into the calculation of
the ion activity product for surface-controlled dissolution or growth are
just the concentrations of those ions in the bulk solution (for which we are
solving). In this regard, a surface-controlled reaction rate law for mineral
dissolution and precipitation requires the solution of the minimum
number of equations equal to N,, the number of independent compo-
nents in the bulk fluid. In contrast, if a transport-controlled rate law is
used, the minimum number of equations is N, + N,,;,, where N,,;, is the
number of minerals in the system.

In a general form, the rate of growth or dissolution of a mineral in
aqueous solution can be expressed as

rate = Akf (a;)f (AG), (28)

where A is the reactive surface area of the mineral of interest (for
example, m? per m? total rock), & is the rate constant (moles formula units
mineral per m? sec.), f(a;) 1s some function of the activities of the
individual ions in solution, and f (AG ) is some function of the free energy
of the solution. The functions, f (a;), represent the inhibiting or catalyzing
effect of various ions in solution which should be considered separately
from the effect of the saturation state per se. This leads to the following
form for the rate law of trystal growth and dissolution of a mineral (see
Lasaga, 1981, 1984; Aagaard and Helgeson, 1982; Steefel and Van

Cappellen, 1990)
Ne+ Ny (Q'm)/” B 1

7 = sgn(log [Q/ K, DAkn( IT a?)
i=1

n

X, , (29)

where £ is either the growth or dissolution rate constant, g, is the activity
of an inhibiting or catalyzing species raised to an empirically determined
power p, and .# and n are two positive numbers also normally deter-
mined by experiment. The bars | | refer to the absolute value of the
quantity, and the term sgn(log Q,,/K,,) gives the sign of the expression:
negative if the fluid is undersaturated and positive if the fluid is supersatu-
rated with respect to the mineral. This formulation ensures that the
reaction rate, 7,,, has the correct sign when» # 1. This is in contrast to the
expression given in Steefel and Van Cappellen (1990) (as pointed out by
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Merino, Nahon, and Wang, 1993), although the correct expression was
used in the calculations presented in that work. In this expression Q,, is
the ion activity product written as

Ne
Q. = H a, (30)
2

and K, is the equilibrium constant for the mineral-water reaction written
as the destruction of one mole of mineral m. The appropriate functional
form for the dependence of the rate on the saturation state of the solution
is the subject of a number of ongoing studies (Nagy and others, 1990;
Van Cappellen and Berner, 1991; Nagy, Blum, and Lasaga, 1991; Nagy
and Lasaga, 1992, Burch, Nagy, and Lasaga, 1993). Nonlinear rate laws
for the mineral-water reactions (that is, m and/or n = 1) can have a
profound effect on the behavior of a reactive flow system, particularly
where they result in a significant decrease in the reaction rates close to
equilibrium (Steefel and Van Cappellen, 1990; Kerrick, Lasaga, and
Raeburn, 1991). Steefel and Van Cappellen (1990) used nonlinear rate
laws for some of the minerals in their simulation of kinetically controlled
weathering and found that they appeared to give more reasonable crystal
growth rates than did the linear forms. A rigorous analysis of the effects of
nonlinear rate laws on the behavior of reactive flow systems is a subject
for future investigations. In the simulations presented in this paper, a
linear form for all the reactions is used (that is, both m and n = 1).

The temperature dependence of the reaction rate constant can be
expressed reasonably well via an Arrhenius equation (Lasaga, 1984).
Since many rate constants are reported at 25°C, it may be more conve-
nient to write the rate constant at some temperature as

—E, (1 1
k= has exp [ R (? B 298.15”’ S

where E, is the activation energy, ky; is the rate constant at 25°C, R is the
gas constant, and 7 is temperature in the Kelvin scale.

Of the parameters that enter into the rate expression for a heteroge-
neous reaction, the reactive surface area or rock texture is in general the
least constrained in natural systems. This is primarily because the surface
areas of the reacting minerals are not constant with time (Steefel and Van
Cappellen, 1990) or because the permeability structure of the medium
has an effect on how much rock surface area is encountered by a
particular volume of fluid. A rock permeability dominated by a few
fractures of relatively wide aperture, for example, has only a small
amount of surface area compared to the volume of fluid passing through
it. The permeability structure of the rock may account for many of the
apparent discrepancies between laboratory and field-determined min-
eral dissolution rates. It is clear that the amount of reactive surface area in
real geological systems will turn out to be a complex function of the
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properties of the particular rock of interest and, somewhat like hydrody-
namic dispersion, will have to be determined through field studies on a
case by case basis.

Any number of methods can be used to calculate reactive surface
areas, although none of them has been verified in a natural system. One
approach is to calculate the total surface area by computing or estimating
the total number of mineral grains per unit area rock and an average
grain radius (Lasaga, 1984). Steefel and Van Cappellen (1990) made use
of a crystal size distribution to avoid averaging the grain radii. In
addition, their method allowed for time-dependent generation of crystal
nucleii, unlike the method of Lasaga (1984) which envisions nucleation as
a single event. A disadvantage of both these approaches, taken by
themselves, is that they don’t explicitly account for the porosity structure
of the rock. As pointed out by Phillips (1991), the porosity (and therefore
by implication, the surface area) involves the size and distribution of
pores rather than the distribution of grain sizes per se. The two are
related only in the case of well-sorted, uncemented grains. The calcula-
tion of reactive surface areas, therefore, should be linked in some fashion
to the porosity/permeability structure of the rock. The method used to
calculate reactive surface areas in this study is discussed in the section on
porosity-permeability relationships in fractured rock.

Calculating the changes in volume fraction for individual minerals is
a more straightforward matter, since it does not depend on any particu-
lar mineral geometry or permeability structure. The change in the
volume fraction of an individual mineral can be calculated directly from

Al
d
% = Volm (32)
where V,, is the molar volume of the mineral. From this expression, the
porosity of the medium can immediately be obtained (if compaction and
dilation are neglected), since

Nm
db=1- 2;,1 by (33)

HEAT TRANSFER AND FLUID FLOW

Conservation of energy.—The conservation of energy can be written as
a simple conduction-convection equation in which heat production and
consumption due to chemical reactions or radioactive decay are ne-
glected

aT
mep,m —(.9—[— = V ’ ()\MVT - pC[)zf uT)’ (34)

where \,, i1s the thermal conduétivity of the bulk medium, T is the
temperature, u is the Darcy flux, p,, and p are the densities of the bulk



multiple chemical species and kinetic precipitation/dissolution reactions 543

medium and fluid respectively, and C,,, and C,; are the specific heat
capacities of the medium and fluid respectively.
Flud continuity equation.—The fluid continuity equation is given by

d(dp)

=V ow, (35)

if dehydration and hydration reactions are neglected. If the fluid is
considered to be incompressible and if the porosity changes as a function
of time are small (that is, the matrix is nearly incompressible), the
expression for steady flow is reduced to

V-u=0. (36)

The assumption of an incompressible fluid has been made here, with the
density variations taken into account only in the gravitational body force
term in eq (40) below (that is, we have assumed the Boussinesq approxi-
mation—Turcotte and Schubert, 1982).

Where the flow field is two dimensional and the flow is incompress-
ible, it is convenient to make use of the stream function (Phillips, 1991).
The fluid continuity equation in this case can be expressed in terms of the
horizontal and vertical dimensions, x and z respectively, as

du, du,
— +
9x 0z

=0, (37)

which is satisfied by the stream function defined as

s ap

P Uy = oo (38)

Uy = —
The fluid continuity equation can be expressed in terms of the stream
function and the temperature (Bear, 1972)

12 2-g2

&kyax akhaz _—;ax’ (39)

where k;, and k, are the horizontal and vertical permeabilities, and p is
calculated from the equation of state described below. This formulation
assumes that the principal directions of the permeability, &, and k,, are
aligned with the coordinate directions x and z.

Darcy’s law.—For geologic media, Darcy’s Law is usually applicable,
except in the case where flow occurs through fractures with a large
aperture. Darcy’s Law, which can be derived from the Navier-Stokes
equation (Marsily, 1986), is given by

[

k .
w= = (VP = pg), (40)
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where k is the permeability tensor, . is the dynamic viscosity, P is the
fluid pressure, and g is the gravity vector [g = (0, 0, — g)]. Darcy’s law
still applies where the fluid continuity equation is expressed in terms of
the stream function (in which case the fluid pressure is eliminated from
the conservation equation), but the fluid velocities are obtained directly
from eq (38).

Equations of state.—The governing equations are complete when
appropriate equations of state for density and viscosity are included. A
full treatment would include density and viscosity as functions of tempera-
ture, pressure, and salinity, but only the effect of temperature is consid-
ered here. A fifth-order polynomial was fitted to the density data for pure
water at 500 bars given in Helgeson and Kirkham (1974). For viscosity, a
fifth-order polynomial was fitted to the data provided in Bruges, Latto,
and Ray (1966), which applies to pressures corresponding to the water-
saturation curve.

NUMERICAL METHODS

One of the principal reasons that few applications of multi-
component reaction-transport have been considered is the daunting size
of the system of equations that must be solved. For a multi-component
chemical system solved numerically, every iteration requires the solution
of a minimum of N, X M equations, where N, is the number of linearly
independent chemical components in the system, and M is the number of
grid points in the system. As noted above, this minimum applies when a
surface-controlled reaction rate term is used. This suggests that in
multi-dimensional systems, where the number of grid points needed to
achieve some degree of accuracy is necessarily large, it will be important
to use the most eflicient numerical method in order to make the problem
tractable.

One-step versus two-step schemes.—In terms of the numerical methods
that could be used to sqlve multi-component reaction-transport prob-
lems, the most important distinction is between one-step methods, where
the reaction and transport terms are solved simultaneously, and two-step
methods, where the reaction and transport terms are either solved
separately or in sequence (for a discussion, see Oran and Boris, 1987;
Yeh and Tripathi, 1989, 1991; Mangold and Tsang, 1991). The accuracy
of two-step approach (also referred to as operator splitting) depends on
the degree of coupling between the reaction term and the transport
terms within any one time step. If either the coupling is weak or the time
step taken is very small, then the reaction terms and the transport terms
may be solved separately. As pointed out by Yeh and Tripathi (1991),
however, an accurate solution of the global set of equations normally
requires iteration between the reaction and transport modules. In the
two-step or “sequential iteration” approach employed by Yeh and Tripathi
(1991), the iteration consists of sequentially solving the decoupled set of
equations until convergence is obtained. In the one-step or global im,
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plicit approach, the iterations involve a linearized set of global nonlinear
equations.

The two-step approach has a number of potential or real advantages:

1. Separate routines for multi-component reaction and transport
may be used. This has the advantage that it is possible to choose
optimized routines which may introduce less numerical disper-
sion in advection-dominant problems, for instance. The de-
coupled methods, therefore, offer greater flexibility to the pro-
grammer.

2. There is no need to invert the very large matrices generated by
the simultaneous solution of a coupled reaction and transport
problem. Consequently, the memory requirements will be less
than those for a fully coupled method.

3. The decoupled methods are generally easier to program, and it
may be possible to take advantage of already available routines.

4. Because the set of matrix equations are smaller in the case of the
two-step methods, they may be better conditioned (Yeh and
Tripathi, 1991). This may be a significant advantage in the
treatment of redox problems where the concentrations of the
unknown concentrations may vary over many orders of magni-
tude.

5. These methods may be easier to develop for use on the new
generation of parallel computers.

It is important to consider, however, some of the potential advantages of
the one-step or global implicit methods (Kee and others, 1985). Of these, the
most important are:

1. The global convergence properties of the fully coupled method may
be better than the multi-step methods. Using a Newton method to
solve the full set of equations, for instance, we expect to achieve
quadratic convergence in the vicinity of a root, while we can
expect linear convergence at best from the decoupled methods.
Yeh and Tripathi (1991) point out that the sequential iteration
method that they employ may require as many as 50 iterations
within any one time step. The number of Newton iterations
required for convergence is normally <10. .

2. It is sometimes possible to take larger timesteps with a fully
implicit or coupled routine. This is particularly true where the
governing differential equations are stiff, that is, when the time
step needed to maintain numerical stability is much smaller than
the time step needed for an accurate solution (Press and others,
1986). Stiffness arises in these kinds of differential equations
primarily because of the different time scales represented by fast
versus slow chemical reactions.

There are pros and cons to both methods, but the choice is less clearcut in
favor of the decoupled methods than has been suggested by Yeh and
Tripathi (1989), particularly where, as discussed above, widely differing
rates of reaction result in, a stiff set of equations. Their comparison of the
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time required for the calculation of a single time step in the one-step and
two-step approaches means very little without comparing the size of the
time step and the convergence properties of the two methods as well. For
an alternative viewpoint on the relative merits of the one-step versus
two-step methods, see the review article by Kee and others (1985). We
have chosen to pursue the fully coupled methods in this work.

A global implicit method for the reaction-transport equation.—Given the
choice of an implicit or coupled method to solve the coupled reaction-
transport equation, there are still a number of possible approaches that
can be used. Following the notation of Lichtner (1992), we can introduce
the differential operator

9
Z(U) = |7 ¢+ V- DV)|U, (41)

and write the governing differential equations in terms of the total
component concentrations as

e Rj’.’”” G=1,...,N,), (42)

where the reaction term R includes only irreversible (in our case,
heterogeneous) reactions. Note that in this formulation, we assume that
the diffusion coefficients are the same for all the aqueous species (both
primary and secondary). This makes the solution of the reaction-
transport equation much simpler, because the secondary species do not
have to be transported individually.

As discussed by KirRner and Reeves (1988), one way to proceed at
this point would be to solve directly for the total component concentra-
tions (the U}’s), thereby decoupling the solution of the differential equa-
tions from the speciation calculations. In this formulation (formulations
B and C of Kirkner and Reeves, 1988), every iteration to solve for Uj is
preceded by an equilibrium speciation calculation to determine the
concentrations of both ptimary and secondary species. On the basis of a
number of preliminary benchmark tests (not reported here), however, it
appears that the most robust solution method directly couples the
speciation calculations to the differential equations to obtain an expres-
sion for the total component concentration in terms of the primary
species alone. A similar conclusion was reached by Reeves and Kirkner
(1988) who carried out a much more extensive set of benchmarks.
Substituting this result into eq (42) gives (essentially a kinetic version of
formulation A of Kirkner and Reeves (1988))

Nx Ne
< C}j + _2 vij'YflKrl 1:[ (,yjcj)vij:|

"o0, (43

*
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where the v,’s and v,’s are the activity coefficients for the secondary and
primary species respectively and where we have neglected the inhibiting
or catalyzing effects of the various aqueous species for the sake of
compactness. If eq (43) is discretized on a grid using M nodal points (see
below), for instance, then the total number of equations to be solved is
N, X M, where N, is the number of primary species in the system. Note
that this method is a variant of the differential and algebraic equation
(DAE) approach using the concentrations of component and precipitated
species as the primary dependent variables (PDVs) discussed by Yeh and
Tripathi (1989; 1991). Because of the form of the mineral-fluid reaction
rate law as expressed in eq (29), however, the concentration of precipi-
tated species can be expressed directly in terms of the concentrations of
primary species.

Finite difference discretization.—The set of partial differential equa-
tions represented by eq (43) can be discretized using any number of
schemes (see, for example, Patankar, 1980; Lapidus and Pinder, 1982;
Press and others, 1986; Marsily, 1986). The integrated finite difference
or control-volume method is a particularly flexible one which easily
includes variable grid spacing and non-constant diffusion coefhcients or
fluid velocities (Narasimhan and Witherspoon, 1976; Patankar, 1980;
Marsily, 1986). In the integrated finite difference formulation, a control
volume is defined within which the partial differential equation must be
satisfied in the average. A Taylor series expansion in terms of neighbor-
ing nodes is used to represent the spatial derivatives that appear in the
flux terms (fig. 1), thus converting the differential equations to a set of
algebraic equations. The reaction terms, which by themselves make up a
set of ordinary differential equations that are functions of time, represent
an average over the control volume. In one dimension, therefore, the
unknown or unknowns (in this case, the N, primary species concentra-
tions) at grid point P are coupled via linear transport coefhcients to the
two neighboring grid points, Wand E (that is, upstream and downstream
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Fig. 1. Control wvolumes for one and two-dimensional systems.
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in the case of flow). In a two dimensional system, each grid point within a
control volume is linked to 4 adjacent grid points where the flow is
parallel to one of the coordinate axes and to 8 neighbors where flow not
parallel to a coordinate axis results in an anisotropic dispersion tensor
(Marsily, 1986).

Typically the greatest difficulty in using Eulerian or fixed grid
methods to represent solute transport occurs where advective transport
is dominant. This is because the use of the central difference method of
representing the first derivative that appears in the advection term
(Lapidus and Pinder, 1982) may result in non-physical oscillations in the
vicinity of sharp concentration fronts (Patankar, 1980; Daus and Frind,
1985; Frind and Germain, 1986; Patel, Cross, and Markatos, 1988). The
performance of a particular finite difference formulation for the first
derivative depends in part on the relative magnitudes of the advection
and dispersion/diffusion terms. The relative importance of the two can
be described by the dimensionless grid Peclet number given by (Daus and
Frind, 1985; Patel, Cross, and Markatos, 1988)

vAx
Pegri,d = F (44)
where Ax refers to the grid spacing at any particular point in space. Only
for Pe,,;; < 2 is the central difference formulation unconditionally stable
(Daus and Frind, 1985; Frind and Germain, 1986; Patel, Cross, and
Markatos, 1988). The problem of stability can be “cured” by using a
forward difference formulation written in terms of the grid point itself
and the upstream or upwind node (Press and others, 1986). The upstream-
weighted formulation, however, achieves its greater stability essentially
by adding numerical dispersion (that is, over and above the physical
dispersion present in the problem), in addition to having a larger
truncation error than the central difference method. The problem is
most severe in multi-dimensional problems where flow is diagonal to
rather than along the direction in which the nodes are distributed (Patel,
Cross, and Markatos, 1988) and in problems where transient, sharp
concentration fronts occur. Higher order schemes are necessary to
eliminate or reduce these effects.

In this work, a “power law scheme” proposed by Patankar (1980) is
used to represent the transport terms in the finite difference approxima-
tion. The method slides between a fully centered form at Pe,,;; < 2 to an
upstream-weighted formulation at Pe,,;; > 10, where the upwind scheme
is necessary for stability (Patankar, 1980). Because the scheme does not
eliminate numerical dispersion, however, the code as presently written is
not ideal for treating problems where very accurate representations of
transient concentration fronts are necessary.

Since it is difficult to choose the coordinate axes of the finite differ-
ence grid so that one of the axes is everywhere parallel to the flow
direction, the dispersion tensor will locally contain off-diagonal terms. I
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this case, for Cartesian coordinates, an average velocity |U|, and the
velocity components |U|, and | U|,, the elements of the dispersion tensor
are (Bear, 1979)

(ag — OLT)[Ulf

D, =a,|U| + 45
(OLL‘OLT)IUE
D, =a|Ul+— 46
o, —ap)|U|,|U]|,
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As discussed above, the off-diagonal coeflicients are multiplied by cross-
dertvative terms requiring the use of a 9 point finite difference operator.

Solution method.—Since both the total component concentrations, U,
and the heterogeneous reaction term, R, are nonlinear functions of the
primary species concentrations, an iterative method is required to solve
it. The nonlinear set of algebraic equations are solved with the Newton-
Raphson method, which makes use of a Taylor series expansion to
linearize the set of nonlinear equations. In practice, one carries out a
series of nested calculations in order to complete a single time step. A
number of Newton iterations are normally required to obtain conver-
gence of the nonlinear set of algebraic equations. Each Newton iteration,
in turn, requires the solution of a set of simultaneous linear equations at
each nodal point within the domain in order to obtain the corrections to
the primary species concentrations (app. 1). If we consider a one-
dimensional system for the sake of simplicity, it is apparent that the
concentrations of the primary species at a nodal point P are potentially
functions of all the primary species concentrations at the P, E, and W
nodal points (fig. 1). Therefore, each function, f;, representing a conser-
vation equation for a total component concentration U; at a nodal point
P, must be expanded in terms of the primary species concentrations at
the three neighboring grid points. The logarithms of the primary species
concentrations are used because of the superior numerical stability of this
method. In a one-dimensional problem, a single Newton iteration re-
quires solving a set of linear equations of the form

Ne
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where the derivatives 9fj/d In C;, form the elements of the Jacobian
matrix. Once the entire vector of concentration corrections (the 3 In C;’s)
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are obtained by solving eq (48) over the entire spatial domain, the
concentrations are updated according to

In Cj&“ =InC} +3InC,, (49)

where the superscript & refers here to the iteration level. This procedure
is repeated until convergence is obtained. A block SOR method is used to
solve the set of linear equations within each Newton iteration and is
discussed more fully in app. 1.

The mineral volume fractions and surface areas are held constant
over a single time step and are updated only once convergence of the
concentrations of the primary species has occurred. This procedure is
Jjustified computationally in the vast majority of cases because the mineral
volume fractions change much more slowly than do the solute concentra-
tions in the fluid. The mineral volume fractions are obtained by writing
eq (32) in finite difference form '

ot = + Y, AL (50)

where n and n + 1 refer to the previous and present time levels
respectively, and At is the time step. The update of the mineral surface
areas depends on the particular formulation adopted. A method for
calculating surface areas in a fractured rock is discussed in the section on
Applications below.

PROGRAM STRUCTURE

The structure of the code used to solve the set of conservation
equations for solute mass is summarized in figure 2. To begin the
calculation, the geometry of the region and its material properties must
be defined. Initial and boundary conditions for the aqueous species,
mineral volume percentages, temperature, and flow are then specified.
At this point, the code begins stepping through time. Where the flow
and/or temperature field are not given in advance, they are calculated
first. If there is little or no feedback between the solute concentration
equation and the hydrodynamic flow, then the solute concentrations can
be solved after the flow and temperature. Where strong coupling is
present, as for example in the case where chemical reactions have-a
significant effect on the solution density, then iteration between the flow
and the solute concentration is required. Alternatively, one could con-
tinue to use the “operator splitting” technique and simply reduce the size
of the time step so that relatively little density change due to solute
reaction and transport occurs in any one time step. The splitting ap-
proach as presently used also assumes that very little porosity and
permeability change occurs in any one time step.

Following the calculation of the flow and temperature fields, the
solute transport coefficients are computed using the formulation given
by Patankar (1980) described above. A check is made at this time to see
whether basis switching is needed at any node within the system. If so, the
reactions are rewritten locally in terms of the dominant species and redox-
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lSpecify geometry and material proper@

l Specify initial and boundary conditions |

IBegin time stepping l
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Fig. 2. Program structure used to calculate coupled multi-species chemical, heat, and
fluid transport and multi-component geochemical reactions.
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couple. At this point, a series of Newton iterations is required in order to
solve for the solute concentrations at the new time level (fig. 2). Each
Newton iteration consists of calculating the function residuals (the f(x;)’s
given by eq 43) and the partial derivatives of these functions (the Jacobian
elements) with respect to the unknown concentrations and then assem-
bling and solving the linear set of N, X M algebraic equations (app. 1) in
order to obtain the corrections to the component concentrations (eqs 48
and 49). As discussed above, the functions include both the contributions
from homogeneous and heterogeneous reactions and from advective,
dispersive, and diffusive transport which are evaluated at each grid point
within the system. This is repeated until convergence 1s achieved, that is,
to the point where the f(x;)’s are all reduced to some desired tolerance. It
is usually not necessary to update the matrix of partial derivatives every
iteration, since the Jacobian matrix does not have to be exact. Instead, the
Jacobian is typically recalculated when the number of Newton iterations
required to achieve convergence exceeds some specified tolerance
(Kirkner and Reeves, 1988). This method (referred to as a modified
Newton method) can be particularly efficient since it is the assembly of
the Jacobian elements that takes a large part of the CPU time (Kee and
others, 1985). Once convergence of the Newton iterations is achieved, the
mineral volume fractions and mineral surface areas are updated. If one
chooses to make use of the quasi-stationary state approximation (Licht-
ner, 1988), then the mineral volume fractions and surface areas are
updated only when a quasi-stationary state with respect to the fluid
concentrations has been achieved, rather than after every time step. If
the porosity and permeability of the medium are allowed to change with
time, they are updated at this time if the code is run in transient mode. At
the end of each time step, whether the code is run in either the quasi-
stationary or transient mode, an algorithm, which computes the second
derivative of the solute concentrations with respect to time, is used to
determine whether the time step should be increased or decreased. This
algorithm provides a way, of minimizing the time truncation error (if that
is an issue in a particular problem) and also of controlling the size of the
time step so as to maintain numerical stability. As the solute concentra-
tion profile relaxes to a steady state, the time step gradually increases to
some specified maximum value (5 yrs in the simulations presented in this

paper).

APPLICATION TO REACTIVE FLOW IN HYDROTHERMAL SYSTEMS

In this section, we use the one and two-dimensional numerical
model described above to examine two important problems related to
reactive flow in hydrothermal systems. First, we use reactive transport
calculations to assess the validity of the local equilibrium assumption in
nonisothermal flow systems. Although it is not possible to describe all the
possible reactive flow systems likely to be found in nature, by considering
a range of conditions as might exist in continental or submarine hydro-
thermal systems, it is possible to place some broad constraints on where.



multiple chemical species and kinetic precipitation/dissolution reactions 553

the local equilibrium assumption is likely to be justified and where it is
likely to break down. Secondly, we use two-dimensional calculations to
investigate the rate of permeability change due to geochemical reactions
in a fracture-controlled hydrothermal system. Of particular interest is
how the time scales for reaction-induced permeability change compare
with the time scales for evolution of the hydrodynamic and thermal
regimes.

Most of the theoretical studies to date on hydrothermal systems
developed in the shallow portions of the Earth’s crust have focused on the
physics of hydrodynamic flow. Relatively little research, however, has
been devoted to quantitative studies of coupled reaction and solute
transport in hydrothermal systems. Only a few studies of either fossil or
active hydrothermal systems have explicitly considered the role of trans-
port processes in determining the geochemical character of a particular
hydrothermal system. Norton and Taylor (1979) carried out simulations
of the Skaergaard intrusion in Greenland in which the hydrodynamic
flow and heat transfer were coupled to isotopic exchange. Cathles (1983)
performed similar calculations in studying the formation of Kuroka-type
massive sulfide deposits. Wood and Hewett (1982) analyzed qualitatively
the spatial distribution of precipitation and dissolution zones resulting
from convection in a sloping limestone layer. Wells and Ghiorso (1991)
investigated the problem of quartz dissolution and cementation in mid-
ocean ridge systems. Phillips (1991) presented a general study of the
fundamentals of flow and reactions in hydrothermal systems and applied
his methodology to the dolomitized reef complex at Lattemore, Italy
(Wilson, Hardie, and Phillips, 1990). Steefel and Lasaga (1992) presented
what may be the first two-dimensional simulations of multi-component
and multi-mineralic reactive flow in a hydrothermal system, focusing on
the chemical effects of fluid mixing resulting from hydrodynamic disper-
sion.

Flow in hydrothermal systems is either partly or wholly driven by
horizontal temperature gradients, although imposed hydraulic head
gradients may modify the flow (Elder, 1965; Norton and Knight, 1977;
Norton and Cathles, 1979; Phillips, 1991; Lowell, Van Cappellen, and
Germanovich, 1993). Any horizontal density gradient can drive convec-
tion, including those due to salinity variations, but high temperature
convection cells generated in the shallow portions of the crust can
generally be attributed to the presence of magma bodies at depth.
Examples are the geothermal fields developed in continental settings (for
example, Broadlands, New Zealand and Yellowstone Park, United States
of America; White, Mufller, and Truesdell, 1971; Truesdell and Fournier,
1976; Elder, 1981; Fournier, 1989; Lowell, 1991) and the submarine
systems that form at mid-ocean ridges or ridge flanks (Anderson, Lang-
seth, and Sclater, 1977; Fehn and Cathles, 1986; Davis and others, 1989;
Lowell, 1991). The imposed temperature gradients not only drive convec-
tion, they also exert an important influence on the character of reactive
hydrothermal systems through the temperature dependence of mineral
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solubilities, aqueous species stabilities, and chemical reaction rates. The
reactions that occur in nonisothermal systems can be classified as gradient
reactions (Wood and Hewett, 1982; Phillips, 1991; Ferry and Dipple,
1991), since they occur either partly or wholly because of gradients in
temperature and/or pressure. As discussed by Phillips (1991), gradient
reactions can occur simultaneously throughout the rock wherever the
flow crosses temperature and/or pressure gradients and are therefore
unlike isothermal reactions that propagate through the rock as coherent
fronts (Lichtner, 1988; Steefel and Van Cappellen, 1990).

The local equilibrium approximation has long been a fundamental
tenet of most geochemical and petrologic studies of hydrothermal sys-
tems. It has not been adequately demonstrated to date, however, that the
reaction rates of the important rock-forming minerals are sufficiently
rapid that the local equilibrium assumption is justified, particularly given
the rapid flow rates that may occur. What are the important parameters
that determine whether the local equilibrium approximation is justified
in a particular hydrothermal system? Knapp (1989) carried out an
interesting review of thisproblem in a wide variety of geological environ-
ments using the nondimensional Damkohler number, given by

k'l
Da=-——, (51)

where k' (T"!) is the effective rate constant (including the surface area
effect), and [ is the length scale of interest. To obtain a more realistic
assessment of how valid the equilibrium assumption is in specific geologic
environments, however, it is necessary to consider both the local flow
rates and temperature gradients. As demonstrated below, the presence of
temperature gradients may impose local length scales that have nothing
to do with the size of the system as a whole.

A second important issue is how the chemical reactions driven by the
transport of solutes across temperature gradients affects the porosity and
permeability of the hydrothermal convection cell. A number of the early
theoretical studies of convection in the crust examined the transient
evolution of the convection cells without considering whether the pernre-
ability will remain constant within the time scale of interest. Since
reaction-induced permeability changes may alter the entire character of
the hydrodynamic flow and temperature regimes, it is important to have
a first-order idea of how rapidly the porosity and permeability are likely
to change given a particular hydrothermal system. At this stage it is
impossible to carry out a truly realistic simulation of the porosity and
permeability change in natural geologic environments. This is primarily
because there is little information at this point on how precipitation and
dissolution reactions will affect permeability. Precipitation of quartz, for
instance, may occur locally along pore throats, thus producing a large
reduction in the permeability for a relatively small change in the porosity
of the rock. To carry out a calculation of reaction-induced permeability’
change at this stage, one must assume a highly idealized fracture geom-
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etry. We assert, however, that these idealized calculations are still valu-
able in analyzing some of the first-order effects associated with reaction-
induced permeability change, just as the simulations of convection in
hydrothermal cells, which ignored the problem completely, were instruc-
tive in elucidating some of the fundamental physics associated with
convection in the crust.

Thermally-driven reactive flow.—Before proceeding to the analyses of
the problems discussed above, it is useful to consider which parameters,
physical and chemical, are important in determining the behavior of
nonisothermal reactive flow. An excellent review of the fundamental
parameters determining the physics of thermally driven flow and equilib-
rium reactions is given by Phillips (1991). One can describe much of the
physical behavior of a particular hydrothermal system with the use of the
nondimensional Rayleigh number along with the scale ratio, S = (2/1)2(k,/
k,) (Phillips, 1991), where & refers to the depth of the system, [ is its
horizontal extent, k, is the horizontal permeability, and £, is the vertical
permeability. The Rayleigh number is given by (Turcotte and Schubert,
1982; Phillips, 1991)

agngM» khAT

Ra "y

; (52)

where a is the thermal expansivity, py is the reference density of water, h
is the vertical extent of the system, AT is the temperature between the
upper and lower boundary, and all the other parameters are the same as
defined in eqs (34) and (40). The use of the nondimensional Rayleigh
number and scale factor as the important parameters to describe the
physics of convection implies that we need not concern ourselves with the
specific values of the permeability in a particular system (Phillips, 1991).
As we shall see below, however, while the Rayleigh number and scale
factor determine the character of the hydrodynamic and temperature
regimes, additional information is needed to specify the behavior of a
reactive solute. The solubility of most minerals depends strongly on the
absolute magnitude of the temperature and under some conditions, the
fluid pressure. This implies, therefore, that the behavior of a high
temperature system will be different from a lower temperature system
with an identical Rayleigh number. Obviously, the temperature depen-
dence of the reaction rates can have a similarly profound effect. Another
important factor, which does not appear in either the Rayleigh number
or the scale factor, is the amount of reactive mineral surface area in the
system. In a fracture-dominated system, this depends at least in part on
the spacing of fractures in the rock. These effects are discussed more fully
in the following section which describes the model used for porosity and
permeability in a fractured rock.

Porosity-permeability model for fractured rock.—In order to couple the
porosity changes due to chemical reactions calculated from eqs (32) and
(33), we need a model that relates the porosity of the medium to its
permeability. In addition, the amount of mineral surface area encoun-
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Fig. 3. Schematic drawing showing a sin%le set of parallel fractures with constant
apertures, 3, and constant spacing, d. The model assumes that the rock matrix is effectively
impermeable, that is, that reactions and transport occur only within the fractures. The total
surface area corresponds to the surface area of the fracture walls.

tered by a volume of fluid may be affected by the porosity-permeability
relationship appropriate for a particular rock. A fluid moving through a
large fracture, for exam}‘)le, will encounter far less mineral surface area
per unit volume fluid than will a fluid moving through a relatively
homogeneous rock like a porous sandstone. The simplest possible poros-
ity-permeability model for fractured media is that of a set or sets of
parallel fractures with smooth walls (Snow, 1970; Norton and Knapp,
1977; Marsily, 1986; Pruess, Wang, and Tsang, 1990; Phillips, 1991). In
this model, the fracture (also referred to as the kinematic or flow)
porosity contributed by a single set of parallel fractures is given by

) .
br =7, (53)

where 8 is the fracture aperture, and d is the fracture spacing (= 1/n,
where n is the fracture density) (fig. 3). This formulation also provides an
expression for the rock permeability for a single set of fractures (Norton
and Knapp, 1977; Phillips, 1991)

83
T 124

or written in terms of the fracture porosity,

82
k= % . (55)

k (54)
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If more than a single set of parallel fractures is present, then the fracture
porosity is given by

=32 56)

where Ny is the number of fracture sets, and the subscript ¢ refers to the
individual fracture sets. This simple formulation, however, slightly over-
estimates the porosity since it doesn’t account for the intersection of the
various fracture sets (that is, the voids where the fractures intersect are
counted twice). For the case in which three sets of mutually orthogonal
fractures are present, thus producing an isotropic permeability, and
where all the fracture sets have the same spacing and fracture apertures,
&r = 38/d. The scalar permeability in this case is (Phillips, 1991)

brd?
k= 36 - (57)
This formulation is used in the two-dimensional simulations described
below. Expressions for porosity-permeability models for fractured rocks
that do not assume an isotropic permeability may be found in Marsily
(1986).

We can also use the porosity-permeability model described above to
calculate mineral surface areas if several additional assumptions are
made. The most important of these assumptions is that the reactions
taking place in the rock occur exclusively along the fracture walls and not
within the rock matrix bordering the fractures. While this will in general
only be true where the rock bordering the fractures has a very low
porosity, thus resulting in low diffusivities of the reacting solutes in the
rock matrix, a simultaneous treatment of flow in fractures and matrix
diffusion is beyond the scope of the present study. The assumption that
the reactions are restricted to the fracture walls has two important
consequences. First, the sum of the mineral surface areas must equal the
total surface area of rock in contact with the fluid. For fractures with
smooth walls and the same aperture, the ratio of the rock surface area to
the fluid volume in a fracture, A5, is

2
5
The total surface area in contact with fluid per unit volume rock (rather
than per volume fluid), 4, is therefore

Ap = (58)

2
A = b 5 (59)

In the case of a single set of parallel fractures, then

2

’ A = g . (60)
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This indicates that the total surface area of rock in contact with fluid in
one or more identical fracture sets depends on the fracture spacing, d.

It is less clear, however, how to calculate the surface areas of
individual minerals using the formalism described above. One can imag-
ine a number of scenarios where one mineral accounts for most of the
surface area along a set of fractures, even though other minerals are
present in the rock. This might be the case, for example, where quartz
precipitation occurs on the fracture wall. Because the surface area of
minerals lining the fracture walls need not bear much relationship to the
bulk mineralogy of the rock, it is more useful to obtain the fraction of the
surface area occupied by any one mineral by considering the average
grain size of the minerals that may evolve with time. If a mineral is either
absent from the rock or undersaturated with respect to the solution, then
its average radius is considered to be zero. We assume for the sake of
simplicity that if a mineral is initially absent from the rock but becomes
supersaturated, it instantaneously acquires a radius of 10 microns which
then evolves with time according to

© orad, 1 4o,

ot A o’ 61)

m

where rad is the mineral radius, and drad,,/ 9t is the average linear growth
rate for the mineral m. The surface area of the mineral, 4,, is then
obtained for any one time step from

A rad, (62)
Ly 2 Hld;z” tots

m=1,Ny,

where N,, is the number of minerals in the system. Note that this
formulation ensures that the reactive surface area of a mineral accessible
to fluid cannot exceed the total surface area along the fracture walls.
Using this porosity-permeability relationship, we can calculate the
reaction-induced changes in rock permeability as a function of time. The
assumption that the mineral-water reactions take place exclusively along
the fracture walls means that the change in the mineral volumes with
time affects the walls of the fractures only. In other words, since the rock
matrix is assumed to be nearly impermeable, precipitation and dissolu-
tion cannot occur in isolated pores within the matrix. A second assump-
tion made is that there is no distribution of fracture apertures (that is,
within any one elemental volume they are assumed to be all of the same
size). As the porosity and permeability evolves in the simulations, how-
ever, variations in fracture aperture develop in space. Additionally, we
assume that the fractures retain smooth, parallel walls throughout the
course of the simulation. We also assume that the permeability remains
isotropic through the course of the two-dimensional simulations.
Porosity-permeability ranges in fractured rocks.—There have been a
number of attempts to estimate porosity-permeability relationships in,
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fractured rocks. Norton and Knapp (1977), using a planar fracture
model of the kind described above, estimated that fracture porosities had
a total range between 1 and 5 X 107% percent, although the more
common range they observed was between 0.1 and 0.001 percent. These
estimates are derived from their measurements of the fracture density (or
fracture spacing) and fracture apertures which are summarized in table 1.
Pruess, Wang, and Tsang (1990), citing studies by Scott and others (1982)
and Peters and others (1984), report that the fracture spacing at the
Yucca Mountain site in Nevada is on the order of 0.3 m and fracture
apertures range from about 10 to 100 pm. Manning and Bird (1991)
measured cumulative vein densities (d~!' or n) in the contact aureole of
the Skaergaard intrusion in Greenland and found that the fracture
apertures ranged from about 100 to 1000 wm with the more common
value being closer to 100 wm. A value of 100 pm was assumed by
Manning and Bird (1991) in their calculations. Table 1 gives the fracture
spacings and the contributions to the total fracture porosity given by the
individual fracture sets recorded by Manning and Bird (1991). Note that
Manning and Bird (1991) actually give the porosities as simple fractions
and not as percents.

TaABLE 1

Estimates of fracture spacing, fracture aperture, and fracture porosities in
natural environments

Fracture Fracture Fracture

Porosity (%) Apcrture (pum) Spacing (m) Reference

5% 1075to 1 0.5 to 200 10 to 0.22 1
0.029* 64 0.22 2
0.285* 100 0.035 3
0.016* 100 0.625 4
0.182* 100 0.055 5
0.021* 7.5 0.035 6
0.003* 19 0.625 7
0.016% 8.7 0.055 8

1. Norton and Knap&) (1977)

2. Pruess, Wang, and Tsang (1990)

3. Average of 6 horizontal veins, Skaergaard Intrusion (Manning and Bird, 1991)
assuming a fracture aperture of 100 pm.

4. Average of 16 vertical pyroxene veins, Skaergaard Intrusion (Manning and Bird,
1991) assuming a fracture aperture of 100 pm.

5. Average of 22 vertical amphibole veins, Skaergaard Intrusion (Manning and Bird,
1991) assuming a fracture aperture of 100 pm.

6. Average of 6 horizontal veins, Skaergaard Intrusion (Manning and Bird, 1991) using
permeability of 10~1> m? determined by Norton and Taylor (19%9) (fracture aperture
calculated from eq 54).

7. Average of 16 vertical pyroxene veins, Skaergaard Intrusion (Manning and Bird,
1991) using permeability of 107'° m? determined by Norton and Taylor (1979) (fracture
aperture calculated from eq 54).

8. Average of 22 vertical amPhibole veins, Skaergaard Intrusion (Manning and Bird,
1991) using permeability of 1075 m? determined by Norton and Taylor (1979) (fracture
aperture calculated from eq 54).

* Porosities represent contribution from a single fracture set.
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As pointed out by Norton and Knapp (1977), the determination of
the fracture apertures is uncertain at best, since the present width of the
fracture, which represents the cumulative width of precipitates and/or
open space, need not actually have been the fracture aperture during
hydrothermal activity. In addition, one expects that there is a pressure
effect at depth that would tend to reduce the fracture aperture. In the
case of the Skaergaard intrusion, there is another way to estimate what
the fracture apertures are likely to have been during the hydrothermal
event. Norton and Taylor (1979), based on hydrodynamic flow and
thermal modeling of the Skaergard intrusion combined with a model for
isotopic exchange, were able to estimate an average permeability of about
10~1> m? for the rocks surrounding the intrusion by comparing model
results with the observed isotopic patterns. If we assume that their
permeability determination is approximately correct and if we also
assume a porosity-permeability model based on an isotropic assembly of
fractures all of the same aperture and spacing, then we can calculate
fracture apertures from eq (54) using the fracture spacings reported by
Manning and Bird (1991). These calculations are also given in table 1. As
an example, if we use the fracture spacing for the 22 vertical amphibole
veins reported by Manning and Bird (1991) for the Skaergaard and
assume that this particular fracture set is duplicated in the second and
third dimension, then one calculates a fracture aperture of 8.7 um and a
total fracture porosity of 0.048 percent. Note that this fracture aperture is
about an order of magnitude less than the present width of mineral
precipitate and open space observed by Manning and Bird (1991).

Validity of the local équilibrium approximation in thermal boundary lay-
ers.—As discussed above, the extent to which the local equilibrium
approximation may be valid for a particular system depends in part on

. TABLE 2

Physical parameters used in hydrothermal simulations

Top boundary temperature 50°C

Lower boundary temperature (at center) 300°C

Depth of system (£) 2980 m
Half-width of system (/) 3840 m
Longitudinal dispersivity () 10 m
Transversc dispersivity (ar) I'm

Thermal conductivity (A,,) 3Wm~!°K!
Heat capacity of fluid (C, ;) 4200 J kg~! °K~!
Heat capacity of rock (C,,) 1005 J kg=! °K~!
Average rock density (p,) 2600 m? kg !
Thermal diffusivity (k) 115 X 1075 m? ¢!
Reference fluid density (pso) 1000 m? kg~!
Gravitational constant (g) 9.8 ms?
Thermal expansivity (o) 1073 °K~t
Average dynamic viscosity (p)f 2 X 107*Pas

TValue used in Rayleigh number calculations and in €q (64). A temperature-dependent
viscosity is used in the numerical simulations. s
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the Damkohler number (eq 51), which compares the characteristic time
for reaction with the characteristic time required for a solute particle to
traverse a certain length scale. When considering nonisothermal systems,
however, it is important to recognize that the flow rate can influence the
local temperature gradients as well. Since the equilibrium solubility of
most rock-forming minerals depends strongly on temperature, sharp
temperature gradients can result in sharp gradients in the equilibrium
constants as well. In other words, unlike the isothermal case where one
can view the solubility as a fixed quantity independent of space, in the
nonisothermal case the solubility of a mineral may be a function of space
locally. The sharper the local temperature gradient, the greater the
possibility that equilibrium will be overstepped as a fluid packet traverses
that distance. For this reason, the analysis of Wells and Ghiorso (1991)
does not really yield any insight into the validity of the local equilibrium
approximation, since the flow rate in their study is not allowed to
influence the temperature field.

It is possible to obtain some order of magnitude estimates of the
degree of disequilibrium one is likely to encounter in a hydrothermal
upflow zone by considering an idealized case in which the buoyant flow is
locally one-dimensional. An example discussed by Lowell, Van Cap-
pellen, and Germanovich (1993) is that of the Sea Cliff hydrothermal
field on the northern Gorda Ridge in the Pacific Ocean. Here discharging
hydrothermal waters result in a thin crust of precipitated silica at the
ocean floor where the heated fluids encounter cold seawater. Lowell, Van
Cappellen, and Germanovich (1993) studied the rate of fracture closing
with the assumption that the fluid remained in equilibrium with quartz.
In this analysis, we relax the assumption of equilibrium with respect to
quartz which requires that numerical methods be used rather than the
analytical expressions obtained by Lowell, Van Cappellen, and Germano-
vich (1993).

We consider a single set of parallel fractures of separation d and
aperture 8 within which a constant and uniform upward flow occurs (fig.
3). We assume that the only reacting phase is quartz which precipitates
due to the cooling of upwelling hydrothermal fluids. The fracture aper-
ture, however, is not allowed to change in these simulations, since we are
interested in describing at this stage only a single steady state. In
addition, we assume that quartz completely lines the fracture walls, so
that Ay, = Ay Agy is calculated from eq (59). As in the example
considered by Lowell, Van Cappellen, and Germanovich (1993), we
consider a steady-state system where the temperature at the top of the
system (the seafloor) is 0°C. At depth, the temperature, T}, is assumed to
be 300°C. Following Lowell, Van Cappellen, and Germanovich (1993),
the temperature distribution as a function of depth, T(z), can be written
as

T@@)~=T[1 — exp (~uz/K)], (63)
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Fig. 4. Temperature versus depth below seafloor (z = 0). The seafloor is assumed to
have a fixed temperature of 0°C, and at depth, below the thermal boundary layer, the
temperature is 300°C. Assumes a permeability of 2 X 10714 m2. Calculated from eqs (63) and
(64).

Al

where u, is the upflow Darcy flux, z is positive downward, and k = N pC,
is the thermal diffusivity. At high Rayleigh numbers, the temperature of
the upwelling fluid remains close to 300°C, except in a thin boundary
layer of thickness [ = k/u: Assuming high Rayleigh number flow (Phillips,
1991), the upward Darcy flux in the interior of the plume can be
estimated from the expression

kT
u = S (64)

We use a value of 107#°C~! for the thermal expansivity and a value of 2 X
10~* Pa s for the viscosity.

As a preliminary example of the degree of supersaturation expected
for a particular thermal boundary layer, consider a hydrothermal dis-
charge zone with a permeability of 2 X 10~'* m2 An approximate
discharge velocity of 9.3 m® m? yr~! is calculated from eq (64). The
resulting thermal boundary layer calculated from eq (63) is about 10 m
(fig. 4). The solution below the thermal boundary layer is assumed to be
in equilibrium with quartz at 300°C. The temperature dependent rate
constant determined by Rimstidt and Barnes (1980) is used in the
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TABLE 3
Reaction rate constants at 25°C and activation energies used in the
simulations
kosec: Activation Energy
Mineral (moles m~2s71) (k] mol™!) Reference

Quartz 430 x 10714 75.0 1

K-feldspar 3.09 x 10712 38.2 2

Albite 3.09 x 10712 38.2. 3

Kaolinite 2.36 x 10714 62.87 4

Muscovite 2.36 x 10~!* 62.87 5

TActivation energy assumed (Lasaga, 1984)

1. Rimstidt and Barnes (1980)

2. Helgeson, Murphy, and Aagaard (1984)

3. Chosen to be the same as K-feldspar

4. Rate from 80°C data of Nagy and others (1990)

5. Chosen to be the same as kaolinite

TABLE 4
Equilibrium constants (log Q/K) used in simulations’
Minerals§

Temp (°C) 0 25 60 100 150 200 250 300
Quartz —-4.61 —4.03 —3.47 -3.07 —2.73 —2.46 -2.20 -2.03
K-feldspar —2.63 —-2.51 —2.75 —-3.32 —4.12 —4.79 -5.32 —6.00
Albite 0.13 -0.21 —-0.97 -2.00 —3.22 —-4.20 —4.97 —5.81
Kaolinite 4.92 3.17 0.89 —1.44 —-3.94 —6.01 -7.79 -9.50

Muscovite 11.42 8.51 4.72 0.85 -3.28 —6.74 -9.73  —12.59

Aqueous Complexes§§

OH- 1493 13.99  13.02 1224 1159 1122 1109  11.28
COyaq)  —17.20 —16.69 —16.40 —1647 —16.95 —17.71 —1870 —20.05
HCO; -10.62 —-1034 —10.13 —10.08 —10.22 —1049 —10.90 =—11.49
HCl(aq) 0.80 0.86 0.83 0.70 0.42 0.04 —048 —1.24
KCl(aq) 2.35 2.08 1.74 1.39 0.97 0.56 0.10 —0.48
NaCl(aq) 0.83 0.77 0.65 0.47 020 —0.I1 —051 —1.05
NaOH(aq) 1522 1420  13.06 1207 1116 1049 9.95 9.52
AI{OH)** 5.69 4.93 410 3.50 2.65 2.13 1.75 1.34
AI(OH); 25.44 2220 1901 1730 1561  13.80 1199  10.30
H;8:0; 10.17 9.82 9.44 9.20 9.11 9.19 9.38 9.62

T Reactions written in terms of primary species H*, HyO, K*, Na*, Al*++ SiOz(g)»
CO; ", and CI~ in all cases as the destruction of 1 mole of the mineral or secondary species.
For example, the reaction for K-feldspar would be written as KAlSisOg + 4H* = K+ +
Al*** + 3810y, + 2H50.

§ Thermo&ynamic data from Sverjensky, Hemley, and D’Angelo (1991) and Sverjen-
sky (personal communication).

§§ Thermodynamic data from Wolery (1983).

calculation (table 3), and the thermodynamic data for quartz is given in
the form of the logarithm of the equilibrium constant (table 4). A uniform
grid spacing of 5 cm was used in this calculation. The effect of fluid
pressure on the solubility of quartz, which is slight at temperatures below
300°C, is neglected in these calculations.
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Fig. 5. Steady-state saturation indices (log Q/K) calculated for quartz using tempera-
ture profile shown in figure 4 and flow velocity calculated from eq (64). Increasin (§ fracture
Eacmg for a given permeability implies a decrease in surface area and thus a reduction in
the eftective rate constant. Note that the maximum supersaturation occurs at z = 0, the
seafloor.

The steady-state saturation index for quartz using three different
fracture spacings is shown in figure 5. Note that the greatest degree of
supersaturation, as expected, occurs at z = 0 (that is, the seafloor, where
the temperature is 0°C). Note also that as the spacing between fractures
becomes smaller (that is, the fracture density, n, becomes larger), the
degree of supersaturation decreases. This follows from eq (60), since.in
fractured rock the total surface area of rock in contact with rock increases
as the number of fractures increase. From figure 5, therefore, it is
apparent that the chemical kinetic behavior of silica in the fracture set
depends on the spacings of the fractures in addition to the rock permeabil-
ity, even though the thermal and hydrodynamic flow regimes depend
only on the permeability.

The one-dimensional calculations using a temperature-dependent
rate law for quartz can be used to estimate the conditions under which
the local equilibrium approximation is valid for nonisothermal flow in
fractures. We carried out 81 calculations of the kind shown in figure 5,
systematically varying the fracture spacing, d, and the permeability, k..
The calculations are applicable only to thermal boundary layers devel-
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Fig. 6. Contour plot of quartz saturation indices calculated numerically at the seafloor
(z = 0) as a function of fracture spacing and permeability. Near equilibrium conditions
occur when the fractures are either finely spacecs)or when the permeability of the rock is low
(and thus, the upward flow rates are slow). For widely spaced fractures and/or high
permeabilities, the silica concentrations approach those that are in equilibrium with quartz
at 300°C (the boundary condition at deptE). Note the slope of the contours is = —2 (see text
for explanation). Based on 81 separate calculations.

oped at permeable upper surfaces and to high Rayleigh number systems,
however, since it is only in this case that the flow velocities in or close to
the boundary layer can be reliably estimated from eq (64). For each run,
the degree of supersaturation with respect to quartz was recorded at z =
0 (that is, at the seafloor where the hot fluids vent) and the results
contoured in figure 6.

The results of the runs indicate that the local equilibrium assump-
tion is approximately valid in the triangular region in fracture spacing-
permeability space where the quartz saturation index is less than about
0.5. As an example, the calculations predict that if a hydrothermal
discharge zone were to develop above a 300°C plume in rocks having the
permeability and fracture spacing estimated for the Skaergaard intru-
sion, the saturation index (log Q/ K) for quartz at the seafloor would be
approx 1.25. Note that the slope of the contours in the plot is about -2,
indicating that permeability (and therefore flow velocity) has a greater
effect on the saturation state of the fluid than does reactive surface area.
This can be explained in the following way. If the size of the thermal
boundary layer is given approximately by (Lowell, Van Cappellen, and
Germanovich, 1993)

[ =

< 65
, s (65)
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then the Damkohler number for reactive flow in a thermal boundary
layer can be written as

el

'w  2kk/d
Dag =—= P

2
u, U,

(66)

where £ is the temperature-dependent reaction rate constant (in units of
inverse time) averaged over the boundary layer. Eq (66) indicates that the
thermal boundary layer Damkohler number depends inversely on the
square of the vertical flow velocity and inversely on the fracture spacing.
Since the degree of supersaturation itself depends inversely on the
Damkohler number, the expression explains the slope of the saturation
contours when the logarithm of the fracture spacing is plotted versus the
logarithm of the permeability. The squared nverse dependence of the
Damkohler number on the fluid velocity arises because the velocity
affects both the rate of solute transport and the thickness of the thermal
boundary. The physics of thermally driven flow, therefore, imposes a
length scale that affects the behavior of a reactive solute.

It is often difficult té obtain reliable measurements of fluid composi-
tions in hydrothermal systems. In many cases, the presence or absence of
metastable mineral phases may give a reliable indication of what the
saturation state of the solution must have been at the time of mineral
deposition. Steefel and Van Cappellen (1990), for example, used the
presence of metastable halloysite in weathering profiles to argue that the
waters moving through the profiles could not have been at equilibrium
with respect to the thermodynamically more stable kaolinite. Similarly, in
hydrothermal systems, the presence of amorphous silica proves that the
fluids must have been supersaturated with respect to quartz. Figure 7 is a
contour plot of the saturation state of the fluid with respect to amorphous
silica as a function of the fracture spacing and permeability obtained from
the calculations described above. Using calculations of this kind, it may be
possible to estimate permeabilities in paleo-hydrothermal systems where
amorphous silica is (or was) present and where the fracture spacing can
be determined.

TWO-DIMENSIONAL REACTIVE FLOW

While the one-dimensional calculations described above are useful
for investigating a number of effects in nonisothermal reactive flow, a
two-dimensional (at minimum) model is needed to consider the global
effects of porosity and permeability change on the character of hydrother-
mal systems. Even in addressing the question of whether local equilib-
rium approximations describe a particular system, a two or three dimen-
sional model may be necessary to represent the flow field realistically.
Since we are interested at this stage in examining first order effects
associated with nonisothermal reactive flow rather than in modeling a
specific system, we use a relatively simple model of a single phase
hydrothermal system developed in a continental setting which is broadly
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Fig. 7. Contour plot of amorphous silica saturation indices as a function of fracture
sgacmg and permeability. Where fracture spacings can be determined, the presence or
absence of amorphous silica in veins may constrain permeabilities in paleo-hydrothermal
systems.

similar to many geothermal fields (for example, Yellowstone Park). The
calculations are carried out using permeabilities ranging between 1071°
m? and 107'* m?, values typical of fractured igneous and metamorphic
rocks (Brace, 1984; Clauser, 1992). The permeability is assumed to
consist of three mutually orthogonal fracture sets, all with the same
fracture spacing and aperture. We also assume that the rock is made up
of a simple suite of minerals consisting of K-feldspar, albite, and quartz (a
leucogranite), with the possibility that muscovite and kaolinite can form.

System description.—Consider a rectangular-shaped region of rela-
tively permeable rock overlying a buried intrusion at depth. The bottom
heated surface of the field is assumed to have a prescribed exponential
temperature dependenee given by

T=T,+ (T, — T.) exp (—10[x/{]), (67)

where T} is 300°C atx = 0, T, is the temperature at the base of the system
one would find if a normal geothermal gradient of 25°C/km were
present, and [ is the half-width of the symmetric convection cell. The top
boundary of the system is fixed at 50°C. The base and the top of the
geothermal system are assumed to be marked by impermeable strata,
thus making them no-flux boundaries. The center of the geothermal
field (at x = 0) is also assumed to be a no flux boundary through
symmetry (fig. 8). Finally, the vertical boundary at x = / is assumed to be
no-flux, which is reasonable because of the relatively short heating length
prescribed by eq (67).  *
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Fig. 8. Boundary conditions and computational grid used in two-dimensional calcula-
tions. The numerical calculations are carried out using 41 nodes in the x direction and 41
nodes in the z direction to discretize the half-width of the convection cell.

The actual computations are carried out on a domain measuring
2980 m deep and 5840 m wide using 1600 grid volumes (fig. 8). Distance
is shown in nondimensional form, obtained by scaling depth by the total
depth of the system, %, and horizontal distance by the half-width of the
system, /. This results in a uniform spacing of 74.5 m in the vertical
dimension and 146 m in the horizontal dimension.

Equilibrium and kinetic database.—Equilibrium constants for the heter-
ogeneous and homogeneous reactions are calculated at each grid point
using a fifth order polynomial fit to the data in table 4. The log K’s for the
minerals are taken from Sverjensky, Hemley, and D’Angelo (1991) who
derived them from Bertan (1988). The log K’s for the complexation
reactions are taken from the EQ3/EQ6 database (Wolery and others,
1990). Activity coeflicients are calculated from an extended Debye-
Huckel formulation (Wolery, 1983). The pressure dependence of the
solubilities is neglected.

The rate data used in the calculations are given in table 3 and are
calculated from eq (31). Eq (29) gives the form of the rate law used in all
the calculations with both .# and n = 1 and with p = 0 (that is,
“first-order” kinetics and no inhibitory or catalytic effects).

Initial conditions.—We assume that the geothermal field begins withi a
normal geothermal gradient of 25°C/km and that the sudden intrusion
of a magma body at depth causes the lower impermeable boundary to be
heated instantaneously at ¢ = 0. To complete the specification of the
initial conditions, we need to give the initial total concentrations of the
solutes or the mineral equilibria used to constrain the concentrations
(table 5) and the initial (or primary) modal mineralogy of the rock. We
restrict ourselves here to the chemical system of KCI, NaCl, Al,Os, SiOs,
and H,0. Since the initial fluid is not isothermal, the use of a mineral
constraint results in differing initial concentrations which depend on the
local temperature. ‘

It is important to point out that the choice of boundary and initial
conditions can have a significant effect on the behavior of the system. The*
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TABLE b
Total solute concentrations and mineral constraints used in the initial fluid

Element Concentration® Constraint
K+ K-feldspar
Nat 1073
Si0y Quartz
COy 107#
Alt+T Albite
H* Muscovite
C1- Charge balance

fTotal concentration in moles kg™~!

results given below, therefore, would be very different if, for instance, an
influx of reactive fluid (for example, meteoric groundwater or magmatic
water) occurred across one of the boundaries.

Steady-state reactive convection.—Before proceeding to simulations in
which the precipitation and dissolution reactions are allowed to affect the
rock’s porosity and permeability, we carry out a number of calculations in
which there is no feedback between the two. This allows us to identify
those effects that can be directly attributed to porosity-permeability
change and those that result from other processes occurring in the model
geothermal field. Steady-state temperature fields and streamlines for
permeabilities of 1075, 5 X 10715, and 107!'* m? (corresponding to
Rayleigh numbers of 50, 250, and 500 using the parameters listed in table
2) are shown in figure 9. The porosity in these simulations is assumed to
be 0.05 percent, yielding the fracture spacings and total surface areas
given in table 6. At a permeability of 107! m?, the temperature contours
show only a slight disturbance from those expected for purely conductive
heat transfer. Nonetheless, convection develops because of the presence
of the distributed heat source at depth. With increasing permeability
(and Rayleigh number), the flow velocities in the upwelling plume
become larger as indicated by the closeness of the spacing between the
streamlines. At a permeability of 107!'* m?, for instance, the convection
cell is characterized by a broad recharge zone and a relatively narrow
upwelling zone with higher flow velocities. This results in the formation
of a nearly isothermal plume of about 225°C in the interior portions of
the convection cell and the development of a thermal boundary layer at
the top and bottom of the system:.

Steady-state quartz reaction rates and supersaturation indices (log Q/
K) are shown in figure 10 for the calculations using permeabilities of
10715, 5 x 1071%, and 10~ '* m?. The reaction rate for quartz is in units of
volume percent my~'. Positive values of the reaction rate indicate precipi-
tation, whereas negative values indicate dissolution. As expected, quartz
dissolves in the region where fluids move up a temperature gradient
close to the heat source at depth and precipitate within the cooling
plume. With increasing Rayleigh number, however, precipitation tends



570 Carl I. Steefel & Antonio C. Lasaga—A coupled model for transport of

(3 21983
> JO $NUN UT SAUNWEING "SWIZIL MO PUE SUOTIIEDT UIIMII] YOBqPIIJ Anpqeauriad-Ansosod oN ‘TeuoisudWIp-uou
a1e douelsip [euozuioy pue daqg (0OG pue ‘06 ‘05 Jo sioquinu ySa[dey) s 0] PUeE Zur o O X G ;W
¢1-01 Jo saniiqeouriad 10§ [[30 UOIDIAUOD [ew1y10apAy 21e15-APEIS Ul SIUIWIBITIS PUB (D) swrdyIosT 6 “Siy

0°1 S0 0°0 S°0- 0°1-

ogT\ 00¢

L5 0- 0L =)

SauljweaJls ainjesadwa |



multiple chemical species and kinetic precipitation/dissolution reactions 571

TABLE 6

Parameters used in two-dimensional calculations

Permeability Rayleigh Porosity Fracture Fracture Surface
(m?) Number (%) Spacing (m) Aperture (pm) Area (m?)
10-1 50 0.05 0.05 8.5 117
5% 1071 250 0.05 0.11 19 53
1071 500 0.05 0.16 27 37

to focus in the thermal boundary layer at the top of the system and close
to the thermal maximum at the base of the system where the solubility
decrease between 300° and 250°C is the greatest. The gap in the quartz
precipitation contours which develops between the two precipitation
zones corresponds to the nearly isothermal interior portion of the plume
which forms in the higher permeability simulations.

As indicated by the one-dimensional calculations described above,
the greatest supersaturation with respect to quartz occurs in the thermal
boundary at the top of the system. Even though in the calculation using
permeabilities of 5 X 10715 and 10~!'* m?, the quartz precipitation rates
are greater near the base of the system than they are at the top, the large
quartz reaction rate constant at temperatures between 250° and 300°C
ensures that close to equilibrium conditions prevail at depth. Note that
the predicted supersaturations with respect to quartz are less than those
calculated by the one-dimensional calculations described above. This is
primarily due to the fact that the flow velocities near the upper imperme-
able surface are significantly less than those predicted by the analytical
expression in eq (64). In the simulations using a permeability of 104 m?,
for example, the Darcy flux close to the top of the system is about 0.1 m?
m~2 yr~! according to the numerical calculations. As discussed above, eq
(64) applies to the interior portions of plume, far from any impermeable
surface. As a result, the thermal boundary layer is not as narrow in the
two-dimensional calculations as would be predicted using eqs (64) and
(63).

The two-dimensional calculations suggest that a local equilibrium
approximation would be justified for the particular conditions used in
the simulation, with the exception of the region corresponding to the
thermal boundary layer which develops in the calculations using high
permeabilities. Even in the calculation using a permeability of 10~} m?,
however, the supersaturation with respect to quartz is modest because of
the decrease in flow velocities close to the impermeable upper surface.
The conclusion that the local equilibrium approximation is justified,
therefore, does not apply in the case of a permeable upper surface, where
the larger supersaturations are more accurately predicted by the one-
dimensional simulations described above. In the nearly isothermal high
temperature core of the plume, the fluid remains everywhere very close
to equilibrium with respect to quartz (and the other primary minerals
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present, albite and K-feldspar). Significant departures from equilibrium
in the high temperature isothermal core are expected only where the
spacing between fractures becomes very wide for a given permeability or
where the flow rates themselves become extremely rapid. Note that
where temperature gradients are linear or approximately so (implying
low Rayleigh number convection), in contrast to the conclusions of Wells
and Ghiorso (1991), significant departures from equilibrium are unlikely
without extremely widely spaced fractures.

The steady state precipitation rate for K-feldspar and the dissolution
rate for albite, obtained from the same calculations used for the quartz
reaction rates, are shown in figure 11. Note the strong similarity between
the K-feldspar precipitation rates and the albite dissolution rates, indicat-
ing a nearly mole for mole replacement of albite by K-feldspar which
conserves H*, Al, and SiOy. Contour plots of the rates of albite precipita-
tion and the dissolution rate of K-feldspar show a similar mole for mole
replacement of K-feldspar by albite in the regions where the fluid moves
up a temperature gradient. The solution pH (fig. 12) is buffered by the
K-feldspar-albite reaction at the ambient temperature, thus producing
contours that mimic the temperature contours very closely. Muscovite
and kaolinite don’t form in significant quantities in any of the simula-
tions.

The albite-K-feldspar reaction, because it involves a nearly mole for
mole replacement, produces almost no net change in the porosity of the
rock. The porosity change which occurs is due to the mobility of silica
resulting from the temperature-dependence of quartz. In this simple
system, therefore, we expect that the rates of porosity increase and
decrease will show a topology within the model geothermal field which is
very similar to the quartz reaction rate topologies. Figure 13 shows the
instantaneous rate of porosity change predicted from the calculations.
The units of the contours are percent porosity per million years. In this
case, we compute a rate of porosity change using eq (33) (that is, by
summing the volume percent of the various minerals in the system) even
though the porosity is not updated in the reactive transport calculations.
Physically, one could view this as corresponding to a case where the local
dilation or closing of a-fracture due to other effects like fluid pressure
balances the change in fracture aperture due to precipitation or dissolu-
tion. The rate of porosity change shown in figure 13, therefore, is the
change due solely to precipitation and dissolution reactions.

Fracture porosity represents a bulk property that may be difficult to
estimate easily in the field. We can calculate the predicted rates of
fracture aperture change directly using eq (53), thus providing informa-
tion more easily observed by the field geologist. The rates of aperture
change depend on the fracture spacing in the particular system, how-
ever, so the observation of fracture apertures must always be done in
conjunction with observations on the fracture spacing in the rock (Nor-
ton and Knapp, 1977, Manning and Bird, 1991). Figure 14 shows the
rate of aperture change in microns per million years predicted for the 3
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Fig. 12. Steady state solution pH in convection cell.

simulations. From figures 13 and 14 we can see that if fracture dilation or
closing due to fluid pressure effects does not occur, the convection
process will eventually produce a region of reduced permeability in the
upwelling portions of the system where cooling causes quartz to precipi-
tate and an enhancement of the permeability in the regions close to the
heat source at depth where fluids move up temperature. In the next
section, we examine the feedback between hydrodynamic flow, heat
transfer, and chemical reactions which arise due to reaction-induced
porosity and permeability change.

REACTION-INDUCED POROSITY-PERMEABILITY CHANGE

In this section we couple the porosity and permeability of the
evolving geothermal field to the reactions taking place in the rock. This
requires that a fully transient calculation be carried out, since one of the
questions to be addressed by the calculation is whether the thermally
driven convection process ever attains a steady state when reactions can
affect the rock’s permeability. We use here a permeability of 10715 m? and
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Fig. 14. Rates of change of the fracture a{)ertures (wm my~!) at steady state. Calcula-
tion does not include a feedback into permeability.

a fracture spacing of 0.05 m, corresponding to a rock such as that
surrounding the Skaergaard intrusion in Greenland (Norton and Taylor,
1979; Manning and Bird, 1991). The physical system as described above,
however, bears no other similarity to the Skaergaard, which is used only
to provide what may be a reasonable porosity-permeability relationship.
All other features of our model geothermal field are the same as those in
the steady state calculations described above in which the porosity and
permeability of the rock were not allowed to change.

As pointed out by Budi Sagar (personal communication), the pres-
ence of no-flux boundaries can have a significant effect on the dynamical



578 Carl 1. Steefel & Antonio C. Lasaga—A coupled model for transport of

0.0

25,000
Years

-0.57

-1.0
-1.

75,000
Years

~1. 04
-1.Q -0.5 0.0 0.5 1.0

Fig. 15. Fracture porosity (percent) at 25,000, 50,000, and 75,000 yrs for an initial
permeability of 107'* m? (Ra = 50) and for the case in which the porosity and permeabilify
are allowed to change with time due to precipitation and dissolution reactions. Note the
intensification of the high porosity zone with time resulting from the reactive infiltration
instability.

behavior of the system when reaction-induced permeability changes
occur. The no-flux boundary, or equivalently any interface where a large
change in permeability occurs, may become the focus of the greatest
permeability changes.

Figure 15 shows the time evolution of the fracture porosity out to
75,000 yrs. At 25,000 yrs, the fracture porosities show a topology similar
to the topology shown by the instantaneous rates of porosity and aper-
ture change in the calculations without porosity-permeability feedback.,
(fig. 13 and 14). At 25,000 yrs, the smallest fracture apertures occur at
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depth in the upwelling plume where the fluid cools from about 300° to
225°C. The largest apertures occur immediately adjacent to the lower
boundary where the flow moves up the sharpest temperature gradient.
In the terminology of Phillips (1991), this region corresponds to the most
negative value of the Rock Alteration Index, described by

RAI = u - VT. (68)

With increasing time, however, the topology and the rate of change of the
fracture porosity evolves significantly due to the feedbacks between the
reaction-induced permeability change and the flow and temperature
regime. By 50,000 yrs, the maximum fracture porosity is approx 0.1
percent at the base of the system, a change of about 0.06 percent from its
initial value, while the minimum fracture porosity shows a change of only
about 0.03 percent (fig. 15). The effect is even more pronounced by
75,000 yrs when the maximum fracture porosities are about 0.28 percent
along the bottom boundary. Similar effects can be seen in contour plots of
fracture aperture and permeability (fig. 16). By 75,000 yrs, the minimum
permeability in the upwelling plume is about 1.5 X 107'® m? while the
permeability has increased to as much as 2.5 X 107!* m? where the fluid
flows up temperature near the base of the system. As discussed above, if
the initial permeability in the system had decreased gradually with depth,
the region in which permeability enhancement occurs would be more
diffuse. The presence of the no-flux boundary at depth, therefore, results
in a more rapid channelization of the flow due to reaction-induced
permeability changes than would, for example, an exponentially decreas-
ing permeability with depth.

The changes in permeability resulting from the precipitation and
dissolution reactions have a significant effect on the flow and tempera-
ture regime (fig. 17). At 25,000 yrs, the temperature field is topologically
similar to that shown in figure 9, although it has not yet evolved to a
steady state. With increasing time, however, the shape of the isotherms
begins to change significantly due to the modification of the flow field
resulting from the permeability change. These effects of the permeability
change can be seen clearly in the contour plots of the stream function (fig.
17). At 25,000 yrs, the convection cell is broadly similar to the steady state
configuration in figure 9. The enhancement of the permeability along
the lower boundary due to the dissolution of quartz results in a focusing
of the flow in that region. In contrast, the reduction in permeability in the
plume causes the flow to diverge around the low permeability zone. By
75,000 yrs, relatively little flow moves up through the low permeability
zone in the center of the system. The divergence of the upwelling flow
away from this low permeability zone explains the unusual shape of the
isotherms in the plume at 75,000 yrs (fig. 17).

The behavior described above is the result of the reactive infiltration
instability described by Ortoleva and others (1987) and by Steefel and
Lasaga (1990). The regions of enhanced porosity and permeability tend
to capture more flow which has the effect of accelerating the rate at which
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the transport-limited reactions proceed. The positive feedback between
the rate of flow and the rate of reaction where a permeability increase
occurs results, therefore, in an instability. In contrast, where precipita-
tion reduces the permeability of the rock, it also reduces the rate of flow
through that region. In this case, the overall reaction rate, which is
limited by the rate at which silica-rich fluids are provided by higher
temperature regions, decelerates with time. Note that in contrast to the
1isothermal case considered by Ortoleva and others (1987) and by Steefel
and Lasaga (1990), these effects do not depend on any particular concen-
tration boundary condition. They result purely from the imposed tem-
perature gradients in the system and in fact are an inevitable conse-
quence of the convection process unless other processes act to reverse the
effects.

Simulations in which the initial permeability was 5 X 10715 and 1014
m? show behavior similar to the case where the initial permeability was
assumed to be 10~'* m?, although the entire process occurs much more
rapidly. At an initial permeability of 10~14 m?, for example, the flow and
temperature field is substantially modified by as little as 15,000 yrs after
the appearance of the heat source at depth. These results, along with the
results of the simulations carried out using a permeability of 1075 m2,
indicate that reaction-induced permeability change is likely to have a
significant effect on the character of a crustal hydrothermal system. It
appears that for a system with a porosity-permeability structure such as
might be commonly found in both continental and marine settings, the
time scale for significant permeability change is less than the time
required to achieve a hydrodynamic and thermal steady state. The
calculations presented here suggest that the effect of reaction-induced
permeability changes is potentially profound and needs to be considered
carefully in future simulations of hydrothermal systems.

CONCLUSIONS

We have presented: a quantitative model that couples chemical
reactions, multi-species chemical transport, hydrodynamic flow, and heat
transfer in one and two dimensions. The model is based on a new
algorithm which simultaneously solves for multi-species transport and
reaction and which includes kinetic-based formulations of mineral-water
reactions. Most importantly, the model can be used to investigate crustal
flow systems where multi-component reaction and transport are impor-
tant and where closed system modeling may not be applicable.

The one and two-dimensional reactive transport model has been
applied to two important problems related to reactive flow in hydrother-
mal systems. The model was used to determine whether it is likely that
the local equilibrium approximation is valid in hydrothermal systems.
The calculations indicate that the saturation state of the fluids in a
fractured rock depends on its bulk permeability, which determines the
flow velocities, and the spacing of fractures, which for a given porosity
and permeability determines the aperture of the fractures. The results of*
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one-dimensional calculations applicable to high Rayleigh number flow in
systems with permeable upper boundaries indicate that significant disequi-
librium with respect to silicate phases may occur in the low temperature
thermal boundary layers. We have shown that the degree of supersatura-
tion in the boundary layers depends inversely on the fracture spacing
(and thus on the fracture aperture) and inversely on the square of the
upward flow velocity. The squared dependence on the flow velocity arises
because of its effect on both the rate of solute transport and on the
thickness of the thermal boundary layer. In systems with impermeable
upper surfaces, the calculated disequilibria is less because of the decrease
in flow velocities near the upper boundary. For permeabilities as high as
1071 m? in systems with an impermeable upper surface, the local
equilibrium approximation appears to be reasonable unless the fractures
are widely spaced (for example, > 100 m). All the calculations indicate
that where the flow is sufficiently slow that the temperature profile is
linear, the local equilibrium approximation is good unless the fractures
are extremely widely spaced.

The model has also been used to study the effects of reaction-
induced porosity and permeability change on the character of the convec-
tive regime. Using a porosity-permeability relationship such as that
observed for the Skaergaard intrusion, the calculations indicate that
reaction-induced permeability change will prevent the convection cell
from attaining a hydrodynamic or thermal steady state. We have shown
that the reactive infiltration instability of Ortoleva and others (1987)
operates in nonisothermal flow systems where the effect is independent
of any particular concentration boundary condition. Permeability reduc-
tion, which typically occurs in the upwelling portion of the convection
cell, will cause the plume to become increasingly diffuse with time as the
ascending fluids diverge around the cemented zone. Permeability en-
hancement, which most commonly occurs where fluids move up tempera-
ture, can result in channeling of flow.
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APPENDIX |
Solution method for reaction-transport equation
Newton’s method.—Newton’s method solves a set of nonlinear equations by making use

of a Taylor series expansion around a function f(x) to linearize the problem. Letting In C
denote the entire vector of values of the logarithms of the concentrations which must be
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solved for, then in the neighborhood of In C the functions f; can be expanded (Press and
others, 1986)

NexM f
i

filnC+3InC)=f(InC) + Fym Calnc +0(31n C? (A-1)
j=1

where O(3 In C?) refers to all terms of second order and higher. If we neglect these second
order and higher terms, then we can move toward the roots of all the f; simultaneously by
solving a set of linear equations for the corrections 8 In C. This means that each iteration
making use of the Taylor series expansion can be written as

NoM e
l

; amc“"c —fi (A-2)

Note that if we define the f; as making up the elements of the vector band the df;/0 in C;
as forming the elements of the matrix A (referred to as the jacobian matrix), then eq (A-2)
can be written in the familiar form

A-5InC =b. (A-3)

Once the 8 In C; are computed, they are used to update the concentrations of the primary
species

mC™=mCM*+3mC,  (G=1,...,N X M). (A-4)

Structure of the Jacobian matrix.—1It is instructive to examine the structure of the Jacobian
matrix which arises from the discretization of the coupled reaction-transport equations,
since it will have a bearing on the choice of a method to solve the set of linear equations
given by eq (43). The Jacobian matrices exhibit a block tridiagonal structure in the case of one
dimensional transport. The blocks making up the matrix A are N, by N, submatrices
corresponding to the primary species at any grid point That is, if we are writing the
conservation equation for $i0Os,, at a particular point in space, the equation sz()z will be
differentiated with respect to all N, primary species (for example, SiOs,,, Al***, K+,
cetera). As an example, consider a one-dimensional system described by 4 primary species
which is discretized using 4 grid points. The matrix A can be represented compactly as a

series of 4 X 4 submatrices, Ay,-such that

A Ap O 0
A Az A Ay O (Ai 5
0 Aspp Azz Asy
0 0 Ay Ay

Those readers with some familiarity with numerical methods will recognize that this is
the structure of any finite difference formulation of a partial differential equation (for
example, the conservation of energy equation), except that in this case the entries are
submatrices rather than single coefficients. If we reduced the system to a single chemical
component, then the forms of the temperature and reaction-transport matrices would be
identical. The submatrices need not be filled entirely with non-zero elements, but, in
general, they will be dense in systems with either a large number of minerals or a great deal
of complexation. The diagonal submatrices (A1, Agg €t cetera) contain contributions from
both the heterogeneous reaction term, R]"”", and from the total soluble concentrations (the
Uys). The offdiagonal submatrices, in contrast, contain only contributions from the totak
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soluble concentrations at the neighboring grid points. Note that the matrix A is sparse (that
is, the ratio of zero to non-zero entries in the matrix is large) when the number of grid
points is large (for example, greater than 100), even though the submatrices (reflecting the
coupling between the various species due to reactions) may themselves be fairly dense.

Solution method.—Any method used to solve the set of equations described by eq (43)
should take into account both the sparseness of the Jacobian matrix A and its block
structure resulting from the finite difference formulation. Direct methods of matrix
inversion that don’t take advantage of the sparseness of the matrix work poorly because the
elimination procedure tends to produce many non-zero entries in the off-diagonal posi-
tions. Potentially the most powerful methods, particularly for one-dimensional problems,
are exact methods that take advantage of the tridiagonal structure of the Jacobian matrix
(Oran and Boris, 1987; Golub and Van Loan, 1989). In simulations in which there is strong
coupling between diagonal and off-diagonal matrix components, the iterative methods
become increasingly less efficient relative to. the exact block tridiagonal solvers. The
increased coupling occurs when the transport terms are large given a particular discretiza-
tion. The exact block tridiagonal solvers may be extended to two-dimensional problems
with the use of an alternating direction implicit or ADI method (Press and others, 1986).

Iterative methods are another common way of solving large, sparse systems of linear
equations. Their advantage is that they minimize both the number of necessary operations
and the amount of computer storage required (Ortega and Rheinboldt, 1970, Stoer and
Bulirsch, 1980). Itis a straightforward procedure, for instance, to store a N, X M by N, X M
Jacobian matrix arising from discretization of a one dimensional problem as a N, x 3 by
N. X M rectangular matrix. The methods are also less subject to the problems associated
with the accumulation of roundoff error (Press and others, 1986).

Iterative methods involve generating a sequence of vectors

oxlox?—- - (A-6)
which eventually converge to the correct solution x. The attractive feature of these methods
is that the number of operations required for each step is comparable to multiplying the
matrix of interest by a vector (Stoer and Bulirsch, 1980). Since we can ignore the zero
entries when using an iterative scheme, a single iteration can be done quickly for a sparse
matrix. The efficiency of the iterative methods depends, of course, on how quickly
convergence is achieved. Because convergence may be slow, they are normally only applied
to large sparse systems of equations.

One of the most commonly used methods is referred to as the Gauss-Seidel iteration
(Ortega and Rheinboldt, 1970; Stoer and Bulirsch, 1980; Press and others, 1986). This
method can be written as

adln €M = b — Ea,kaﬁ In Cj*! ga,ks InC, (=12...,N) (A7)
Y

where the a; are the components of the Jacobian matrix, i and i + 1 refer to the iteration
levels, and the 3 In C; are again the corrections to the logarithms of the concentrations of the
primary species. In the Gauss-Seidel method, 8 In C’+1 is taken as the solution of 8 In C;. Note
that in the Gauss-Seidel iteration, information from the ¢ + 1 iteration is used as soon as it
becomes available. In many cases it is possible to obtain faster rates of convergence by
introducing a relaxation parameter ». 1f § In CFis the solution of the Gauss-Seidel iteration,
then the value of § In C;“ is obtained from

8InC;* =3InC+ 0@ In CF—81nC)). (A-8)
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This is referred to as the SOR or successive overrelaxation method (Ortega and Rheinboldt,
1970; Press and others, 1986) which reduces to the Gauss-Seidel iteration when w = 1.
When the SOR (or Gauss-Seidel) iteration is used to solve the set of linear equations that
arise from the use of Newton’s method (eq 43), the composite method is referred to as a
Newton-SOR iteration, with Newton’s method as the primary iteration and SOR as the
secondary iteration (Ortega and Rheinboldt, 1970).

The ordered structure of the Jacobian matrices which arise in coupled reaction-
transport problems suggest the use of block iterative procedures (Stoer and Bulirsch, 1980).
These methods are based on a division of the matrix A into N partitions, each of which is a
system of equations to be solved. One can think of the block iterative methods as a way of
mixing iterative methods, which are suitable for large sparse matrices of the kind that arise
from finite difference or finite element formulations and direct methods (for example, LU
decomposition), which work best on smaller, dense matrices. The method employed in the
code developed here is the block SOR method. When the relaxation parameter  is taken as
1, the method reduces to the block Gauss-Seidel method which takes the form

mﬁmq“=q—z@@mq“—g@®mq (G=12..,N) (A9

where N is the number of partitions used. Note that the block Gauss-Seidel method becomes
identical to the more familiar Gauss-Seidel method described above (Press and others, 1986)
when the size of the partition is chosen to be 1. In this (trivial) case, the submatrices Ay
revert to the single entries a; in the Jacobian matrix. From eq (A-9), it is apparent that in
order to solve for the vector 8 In C,, the diagonal submatrices (the A;) must be non-singular
so that they can be inverted at every iteration. By examining the structure of the Jacobian
matrix in eq (A-5), it appears that the obvious way to proceed in the case of reaction-
transport problems is to choose N in eq (A-9) (the number of partitions) as M, the number of
grid points in the system. This implies that the size of each partition is N, the number of
primary species in the systemsAt each iteration step, therefore, M systems of N, linear
equations need to be solved for reaction-transport problems. With the block iterative
methods, it is possible to use LU decomposition on the relatively small (N, X N,), dense
submatrices corresponding to the reaction terms and an iterative procedure taking advan-
tage of the sparseness of the global matrix A. The diagonal submatrices can be converted to
the LU form so that only the back substitution step need be carried out at every iteration.

-
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